Spaces:
Runtime error
Runtime error
refactor(model): inherit from HF Flax & simplify
Browse files- dalle_mini/model/__init__.py +1 -1
- dalle_mini/model/configuration.py +4 -71
- dalle_mini/model/modeling.py +163 -734
dalle_mini/model/__init__.py
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
from .configuration import DalleBartConfig
|
| 2 |
-
from .modeling import
|
|
|
|
| 1 |
from .configuration import DalleBartConfig
|
| 2 |
+
from .modeling import DalleBart
|
dalle_mini/model/configuration.py
CHANGED
|
@@ -22,69 +22,6 @@ logger = logging.get_logger(__name__)
|
|
| 22 |
|
| 23 |
|
| 24 |
class DalleBartConfig(PretrainedConfig):
|
| 25 |
-
r"""
|
| 26 |
-
This is the configuration class to store the configuration of a `DalleBartModel`. It is used to
|
| 27 |
-
instantiate a DalleBart model according to the specified arguments, defining the model architecture. Instantiating a
|
| 28 |
-
configuration with the defaults will yield a similar configuration to that of the BART `facebook/bart-large
|
| 29 |
-
<https://huggingface.co/facebook/bart-large>`__ architecture.
|
| 30 |
-
|
| 31 |
-
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
| 32 |
-
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
Args:
|
| 36 |
-
encoder_vocab_size (:obj:`int`, `optional`, defaults to 50265):
|
| 37 |
-
Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
|
| 38 |
-
:obj:`inputs_ids` passed when calling :class:`~transformers.BartModel` or
|
| 39 |
-
:class:`~transformers.TFBartModel`.
|
| 40 |
-
d_model (:obj:`int`, `optional`, defaults to 1024):
|
| 41 |
-
Dimensionality of the layers and the pooler layer.
|
| 42 |
-
encoder_layers (:obj:`int`, `optional`, defaults to 12):
|
| 43 |
-
Number of encoder layers.
|
| 44 |
-
decoder_layers (:obj:`int`, `optional`, defaults to 12):
|
| 45 |
-
Number of decoder layers.
|
| 46 |
-
encoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
|
| 47 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
| 48 |
-
decoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
|
| 49 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
| 50 |
-
decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
|
| 51 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
| 52 |
-
encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
|
| 53 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
| 54 |
-
activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`):
|
| 55 |
-
The non-linear activation function (function or string) in the encoder and pooler. If string,
|
| 56 |
-
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
|
| 57 |
-
dropout (:obj:`float`, `optional`, defaults to 0.1):
|
| 58 |
-
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 59 |
-
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
|
| 60 |
-
The dropout ratio for the attention probabilities.
|
| 61 |
-
activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
|
| 62 |
-
The dropout ratio for activations inside the fully connected layer.
|
| 63 |
-
classifier_dropout (:obj:`float`, `optional`, defaults to 0.0):
|
| 64 |
-
The dropout ratio for classifier.
|
| 65 |
-
max_position_embeddings (:obj:`int`, `optional`, defaults to 1024):
|
| 66 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 67 |
-
just in case (e.g., 512 or 1024 or 2048).
|
| 68 |
-
init_std (:obj:`float`, `optional`, defaults to 0.02):
|
| 69 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 70 |
-
encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
|
| 71 |
-
The LayerDrop probability for the encoder. See the `LayerDrop paper <see
|
| 72 |
-
https://arxiv.org/abs/1909.11556>`__ for more details.
|
| 73 |
-
decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
|
| 74 |
-
The LayerDrop probability for the decoder. See the `LayerDrop paper <see
|
| 75 |
-
https://arxiv.org/abs/1909.11556>`__ for more details.
|
| 76 |
-
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
| 77 |
-
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
|
| 78 |
-
scale_embedding (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
| 79 |
-
Scale embeddings by diving by sqrt(d_model).
|
| 80 |
-
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
| 81 |
-
Whether or not the model should return the last key/values attentions (not used by all models).
|
| 82 |
-
num_labels: (:obj:`int`, `optional`, defaults to 3):
|
| 83 |
-
The number of labels to use in :class:`~transformers.BartForSequenceClassification`.
|
| 84 |
-
forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
|
| 85 |
-
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
|
| 86 |
-
:obj:`eos_token_id`.
|
| 87 |
-
"""
|
| 88 |
model_type = "dallebart"
|
| 89 |
keys_to_ignore_at_inference = ["past_key_values"]
|
| 90 |
attribute_map = {
|
|
@@ -117,10 +54,9 @@ class DalleBartConfig(PretrainedConfig):
|
|
| 117 |
scale_embedding=False,
|
| 118 |
gradient_checkpointing=False,
|
| 119 |
use_cache=True,
|
| 120 |
-
num_labels=3,
|
| 121 |
is_encoder_decoder=True,
|
| 122 |
forced_eos_token_id=None,
|
| 123 |
-
tie_word_embeddings=False, #
|
| 124 |
**kwargs,
|
| 125 |
):
|
| 126 |
self.normalize_text = normalize_text
|
|
@@ -149,28 +85,25 @@ class DalleBartConfig(PretrainedConfig):
|
|
| 149 |
self.scale_embedding = (
|
| 150 |
scale_embedding # scale factor will be sqrt(d_model) if True
|
| 151 |
)
|
| 152 |
-
self.decoder_start_token_id = image_vocab_size # BOS appended to vocab
|
| 153 |
self.min_length = image_length + 1
|
| 154 |
self.max_length = image_length + 1
|
| 155 |
|
| 156 |
-
# remove keys
|
| 157 |
for k in [
|
|
|
|
| 158 |
"bos_token_id",
|
| 159 |
"eos_token_id",
|
| 160 |
-
"pad_token_id",
|
| 161 |
"decoder_start_token_id",
|
| 162 |
-
"forced_eos_token_id",
|
| 163 |
]:
|
| 164 |
kwargs.pop(k, None)
|
| 165 |
|
| 166 |
super().__init__(
|
| 167 |
-
num_labels=num_labels,
|
| 168 |
pad_token_id=image_vocab_size
|
| 169 |
+ 1, # needed to avoid errors during generation (converted to jnp.array)
|
| 170 |
bos_token_id=image_vocab_size + 1, # set to unreachable values
|
| 171 |
eos_token_id=image_vocab_size + 1,
|
| 172 |
is_encoder_decoder=is_encoder_decoder,
|
| 173 |
-
decoder_start_token_id=
|
| 174 |
forced_eos_token_id=forced_eos_token_id,
|
| 175 |
tie_word_embeddings=tie_word_embeddings,
|
| 176 |
**kwargs,
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
class DalleBartConfig(PretrainedConfig):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
model_type = "dallebart"
|
| 26 |
keys_to_ignore_at_inference = ["past_key_values"]
|
| 27 |
attribute_map = {
|
|
|
|
| 54 |
scale_embedding=False,
|
| 55 |
gradient_checkpointing=False,
|
| 56 |
use_cache=True,
|
|
|
|
| 57 |
is_encoder_decoder=True,
|
| 58 |
forced_eos_token_id=None,
|
| 59 |
+
tie_word_embeddings=False, # different modalities and sizes
|
| 60 |
**kwargs,
|
| 61 |
):
|
| 62 |
self.normalize_text = normalize_text
|
|
|
|
| 85 |
self.scale_embedding = (
|
| 86 |
scale_embedding # scale factor will be sqrt(d_model) if True
|
| 87 |
)
|
|
|
|
| 88 |
self.min_length = image_length + 1
|
| 89 |
self.max_length = image_length + 1
|
| 90 |
|
| 91 |
+
# remove inferred keys to prevent errors when loading config (passed as kwargs)
|
| 92 |
for k in [
|
| 93 |
+
"pad_token_id",
|
| 94 |
"bos_token_id",
|
| 95 |
"eos_token_id",
|
|
|
|
| 96 |
"decoder_start_token_id",
|
|
|
|
| 97 |
]:
|
| 98 |
kwargs.pop(k, None)
|
| 99 |
|
| 100 |
super().__init__(
|
|
|
|
| 101 |
pad_token_id=image_vocab_size
|
| 102 |
+ 1, # needed to avoid errors during generation (converted to jnp.array)
|
| 103 |
bos_token_id=image_vocab_size + 1, # set to unreachable values
|
| 104 |
eos_token_id=image_vocab_size + 1,
|
| 105 |
is_encoder_decoder=is_encoder_decoder,
|
| 106 |
+
decoder_start_token_id=image_vocab_size, # BOS appended to vocab
|
| 107 |
forced_eos_token_id=forced_eos_token_id,
|
| 108 |
tie_word_embeddings=tie_word_embeddings,
|
| 109 |
**kwargs,
|
dalle_mini/model/modeling.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
# coding=utf-8
|
| 2 |
-
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved.
|
| 3 |
#
|
| 4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
# you may not use this file except in compliance with the License.
|
|
@@ -12,72 +12,61 @@
|
|
| 12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
# See the License for the specific language governing permissions and
|
| 14 |
# limitations under the License.
|
| 15 |
-
"""
|
| 16 |
|
| 17 |
import math
|
| 18 |
from functools import partial
|
| 19 |
-
from typing import
|
| 20 |
|
| 21 |
import flax.linen as nn
|
| 22 |
import jax
|
| 23 |
import jax.numpy as jnp
|
| 24 |
-
|
| 25 |
-
from flax.
|
| 26 |
-
from flax.linen import combine_masks, make_causal_mask
|
| 27 |
-
from flax.linen.attention import dot_product_attention_weights
|
| 28 |
from flax.traverse_util import flatten_dict
|
| 29 |
-
from jax import lax
|
| 30 |
from jax.random import PRNGKey
|
| 31 |
from transformers.modeling_flax_outputs import (
|
| 32 |
-
FlaxBaseModelOutput,
|
| 33 |
-
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
| 34 |
FlaxCausalLMOutputWithCrossAttentions,
|
| 35 |
FlaxSeq2SeqLMOutput,
|
| 36 |
-
FlaxSeq2SeqModelOutput,
|
| 37 |
)
|
| 38 |
-
from transformers.modeling_flax_utils import ACT2FN
|
| 39 |
from transformers.utils import logging
|
| 40 |
|
| 41 |
-
from .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
logger = logging.get_logger(__name__)
|
| 44 |
|
| 45 |
|
| 46 |
-
|
| 47 |
-
input_ids: np.array, pad_token_id: int, decoder_start_token_id: int
|
| 48 |
-
) -> np.ndarray:
|
| 49 |
"""
|
| 50 |
-
|
|
|
|
| 51 |
"""
|
| 52 |
-
shifted_input_ids = np.zeros_like(input_ids)
|
| 53 |
-
shifted_input_ids[:, 1:] = input_ids[:, :-1]
|
| 54 |
-
shifted_input_ids[:, 0] = decoder_start_token_id
|
| 55 |
-
|
| 56 |
-
shifted_input_ids = np.where(
|
| 57 |
-
shifted_input_ids == -100, pad_token_id, shifted_input_ids
|
| 58 |
-
)
|
| 59 |
-
return shifted_input_ids
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
class FlaxBartAttention(nn.Module):
|
| 63 |
-
config: DalleBartConfig
|
| 64 |
-
embed_dim: int
|
| 65 |
-
num_heads: int
|
| 66 |
-
dropout: float = 0.0
|
| 67 |
-
causal: bool = False
|
| 68 |
-
bias: bool = True
|
| 69 |
-
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
| 70 |
|
| 71 |
def setup(self) -> None:
|
| 72 |
self.head_dim = self.embed_dim // self.num_heads
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
|
| 77 |
dense = partial(
|
| 78 |
nn.Dense,
|
| 79 |
self.embed_dim,
|
| 80 |
-
use_bias=
|
| 81 |
dtype=self.dtype,
|
| 82 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
| 83 |
)
|
|
@@ -92,150 +81,13 @@ class FlaxBartAttention(nn.Module):
|
|
| 92 |
jnp.ones((1, self.embed_dim), dtype="bool"), dtype="bool"
|
| 93 |
)
|
| 94 |
|
| 95 |
-
def _split_heads(self, hidden_states):
|
| 96 |
-
return hidden_states.reshape(
|
| 97 |
-
hidden_states.shape[:2] + (self.num_heads, self.head_dim)
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
def _merge_heads(self, hidden_states):
|
| 101 |
-
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
| 102 |
-
|
| 103 |
-
@nn.compact
|
| 104 |
-
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
| 105 |
-
"""
|
| 106 |
-
This function takes projected key, value states from a single input token and concatenates the states to cached
|
| 107 |
-
states from previous steps. This function is slighly adapted from the official Flax repository:
|
| 108 |
-
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
| 109 |
-
"""
|
| 110 |
-
# detect if we're initializing by absence of existing cache data.
|
| 111 |
-
is_initialized = self.has_variable("cache", "cached_key")
|
| 112 |
-
cached_key = self.variable(
|
| 113 |
-
"cache", "cached_key", jnp.zeros, key.shape, key.dtype
|
| 114 |
-
)
|
| 115 |
-
cached_value = self.variable(
|
| 116 |
-
"cache", "cached_value", jnp.zeros, value.shape, value.dtype
|
| 117 |
-
)
|
| 118 |
-
cache_index = self.variable(
|
| 119 |
-
"cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
if is_initialized:
|
| 123 |
-
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
| 124 |
-
# update key, value caches with our new 1d spatial slices
|
| 125 |
-
cur_index = cache_index.value
|
| 126 |
-
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
| 127 |
-
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
| 128 |
-
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
| 129 |
-
cached_key.value = key
|
| 130 |
-
cached_value.value = value
|
| 131 |
-
num_updated_cache_vectors = query.shape[1]
|
| 132 |
-
cache_index.value = cache_index.value + num_updated_cache_vectors
|
| 133 |
-
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
| 134 |
-
pad_mask = jnp.broadcast_to(
|
| 135 |
-
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
| 136 |
-
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
| 137 |
-
)
|
| 138 |
-
attention_mask = combine_masks(pad_mask, attention_mask)
|
| 139 |
-
return key, value, attention_mask
|
| 140 |
-
|
| 141 |
-
def __call__(
|
| 142 |
-
self,
|
| 143 |
-
hidden_states: jnp.ndarray,
|
| 144 |
-
attention_mask: jnp.ndarray,
|
| 145 |
-
key_value_states: Optional[jnp.ndarray] = None,
|
| 146 |
-
init_cache: bool = False,
|
| 147 |
-
deterministic: bool = True,
|
| 148 |
-
) -> Tuple[jnp.ndarray]:
|
| 149 |
-
"""Input shape: Batch x Time x Channel"""
|
| 150 |
-
|
| 151 |
-
# if key_value_states are provided this layer is used as a cross-attention layer
|
| 152 |
-
# for the decoder
|
| 153 |
-
is_cross_attention = key_value_states is not None
|
| 154 |
-
batch_size = hidden_states.shape[0]
|
| 155 |
-
|
| 156 |
-
# get query proj
|
| 157 |
-
query_states = self.q_proj(hidden_states)
|
| 158 |
-
# get key, value proj
|
| 159 |
-
if is_cross_attention:
|
| 160 |
-
# cross_attentions
|
| 161 |
-
key_states = self.k_proj(key_value_states)
|
| 162 |
-
value_states = self.v_proj(key_value_states)
|
| 163 |
-
else:
|
| 164 |
-
# self_attention
|
| 165 |
-
key_states = self.k_proj(hidden_states)
|
| 166 |
-
value_states = self.v_proj(hidden_states)
|
| 167 |
-
|
| 168 |
-
query_states = self._split_heads(query_states)
|
| 169 |
-
key_states = self._split_heads(key_states)
|
| 170 |
-
value_states = self._split_heads(value_states)
|
| 171 |
-
|
| 172 |
-
# handle cache prepare causal attention mask
|
| 173 |
-
if self.causal:
|
| 174 |
-
query_length, key_length = query_states.shape[1], key_states.shape[1]
|
| 175 |
-
if self.has_variable("cache", "cached_key"):
|
| 176 |
-
mask_shift = self.variables["cache"]["cache_index"]
|
| 177 |
-
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
| 178 |
-
causal_mask = lax.dynamic_slice(
|
| 179 |
-
self.causal_mask,
|
| 180 |
-
(0, 0, mask_shift, 0),
|
| 181 |
-
(1, 1, query_length, max_decoder_length),
|
| 182 |
-
)
|
| 183 |
-
else:
|
| 184 |
-
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
| 185 |
-
causal_mask = jnp.broadcast_to(
|
| 186 |
-
causal_mask, (batch_size,) + causal_mask.shape[1:]
|
| 187 |
-
)
|
| 188 |
-
|
| 189 |
-
# combine masks if needed
|
| 190 |
-
if self.causal:
|
| 191 |
-
attention_mask = jnp.broadcast_to(
|
| 192 |
-
jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape
|
| 193 |
-
)
|
| 194 |
-
attention_mask = combine_masks(attention_mask, causal_mask)
|
| 195 |
-
else:
|
| 196 |
-
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
| 197 |
-
|
| 198 |
-
# During fast autoregressive decoding, we feed one position at a time,
|
| 199 |
-
# and cache the keys and values step by step.
|
| 200 |
-
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
|
| 201 |
-
key_states, value_states, attention_mask = self._concatenate_to_cache(
|
| 202 |
-
key_states, value_states, query_states, attention_mask
|
| 203 |
-
)
|
| 204 |
-
|
| 205 |
-
# Convert the boolean attention mask to an attention bias.
|
| 206 |
-
# attention mask in the form of attention bias
|
| 207 |
-
attention_bias = lax.select(
|
| 208 |
-
attention_mask > 0,
|
| 209 |
-
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
| 210 |
-
jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype),
|
| 211 |
-
)
|
| 212 |
-
|
| 213 |
-
dropout_rng = None
|
| 214 |
-
if not deterministic and self.dropout > 0.0:
|
| 215 |
-
dropout_rng = self.make_rng("dropout")
|
| 216 |
-
|
| 217 |
-
attn_weights = dot_product_attention_weights(
|
| 218 |
-
query_states,
|
| 219 |
-
key_states,
|
| 220 |
-
bias=attention_bias,
|
| 221 |
-
dropout_rng=dropout_rng,
|
| 222 |
-
dropout_rate=self.dropout,
|
| 223 |
-
broadcast_dropout=True,
|
| 224 |
-
deterministic=deterministic,
|
| 225 |
-
dtype=self.dtype,
|
| 226 |
-
precision=None,
|
| 227 |
-
)
|
| 228 |
-
|
| 229 |
-
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
| 230 |
-
attn_output = self._merge_heads(attn_output)
|
| 231 |
-
attn_output = self.out_proj(attn_output)
|
| 232 |
-
|
| 233 |
-
return attn_output
|
| 234 |
-
|
| 235 |
|
| 236 |
-
class FlaxBartEncoderLayer(
|
| 237 |
-
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
def setup(self) -> None:
|
| 241 |
self.embed_dim = self.config.d_model
|
|
@@ -244,9 +96,10 @@ class FlaxBartEncoderLayer(nn.Module):
|
|
| 244 |
embed_dim=self.embed_dim,
|
| 245 |
num_heads=self.config.encoder_attention_heads,
|
| 246 |
dropout=self.config.attention_dropout,
|
|
|
|
| 247 |
dtype=self.dtype,
|
| 248 |
)
|
| 249 |
-
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype)
|
| 250 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
| 251 |
self.activation_fn = ACT2FN[self.config.activation_function]
|
| 252 |
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
|
@@ -262,39 +115,15 @@ class FlaxBartEncoderLayer(nn.Module):
|
|
| 262 |
use_bias=False,
|
| 263 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
| 264 |
)
|
| 265 |
-
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype)
|
| 266 |
-
|
| 267 |
-
def __call__(
|
| 268 |
-
self,
|
| 269 |
-
hidden_states: jnp.ndarray,
|
| 270 |
-
attention_mask: jnp.ndarray,
|
| 271 |
-
deterministic: bool = True,
|
| 272 |
-
) -> Tuple[jnp.ndarray]:
|
| 273 |
-
residual = hidden_states
|
| 274 |
-
hidden_states = self.self_attn(
|
| 275 |
-
hidden_states=hidden_states, attention_mask=attention_mask
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 279 |
-
hidden_states = residual + hidden_states
|
| 280 |
-
hidden_states = self.self_attn_layer_norm(hidden_states)
|
| 281 |
-
|
| 282 |
-
residual = hidden_states
|
| 283 |
-
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
| 284 |
-
hidden_states = self.activation_dropout_layer(
|
| 285 |
-
hidden_states, deterministic=deterministic
|
| 286 |
-
)
|
| 287 |
-
hidden_states = self.fc2(hidden_states)
|
| 288 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 289 |
-
hidden_states = residual + hidden_states
|
| 290 |
-
hidden_states = self.final_layer_norm(hidden_states)
|
| 291 |
-
|
| 292 |
-
return hidden_states
|
| 293 |
|
| 294 |
|
| 295 |
-
class FlaxBartEncoderLayerCollection(
|
| 296 |
-
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
def setup(self):
|
| 300 |
layer_module = (
|
|
@@ -306,27 +135,15 @@ class FlaxBartEncoderLayerCollection(nn.Module):
|
|
| 306 |
layer_module(self.config, name=str(i), dtype=self.dtype)
|
| 307 |
for i in range(self.config.encoder_layers)
|
| 308 |
]
|
|
|
|
| 309 |
|
| 310 |
-
def __call__(
|
| 311 |
-
self,
|
| 312 |
-
hidden_states,
|
| 313 |
-
attention_mask,
|
| 314 |
-
deterministic: bool = True,
|
| 315 |
-
):
|
| 316 |
-
|
| 317 |
-
for encoder_layer in self.layers:
|
| 318 |
-
hidden_states = encoder_layer(
|
| 319 |
-
hidden_states,
|
| 320 |
-
attention_mask,
|
| 321 |
-
deterministic,
|
| 322 |
-
)
|
| 323 |
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
|
| 331 |
def setup(self) -> None:
|
| 332 |
self.embed_dim = self.config.d_model
|
|
@@ -336,21 +153,23 @@ class FlaxBartDecoderLayer(nn.Module):
|
|
| 336 |
num_heads=self.config.decoder_attention_heads,
|
| 337 |
dropout=self.config.attention_dropout,
|
| 338 |
causal=True,
|
|
|
|
| 339 |
dtype=self.dtype,
|
| 340 |
)
|
| 341 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
| 342 |
self.activation_fn = ACT2FN[self.config.activation_function]
|
| 343 |
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
| 344 |
|
| 345 |
-
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype)
|
| 346 |
self.encoder_attn = FlaxBartAttention(
|
| 347 |
config=self.config,
|
| 348 |
embed_dim=self.embed_dim,
|
| 349 |
num_heads=self.config.decoder_attention_heads,
|
| 350 |
dropout=self.config.attention_dropout,
|
|
|
|
| 351 |
dtype=self.dtype,
|
| 352 |
)
|
| 353 |
-
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype)
|
| 354 |
self.fc1 = nn.Dense(
|
| 355 |
self.config.encoder_ffn_dim,
|
| 356 |
dtype=self.dtype,
|
|
@@ -363,58 +182,15 @@ class FlaxBartDecoderLayer(nn.Module):
|
|
| 363 |
use_bias=False,
|
| 364 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
| 365 |
)
|
| 366 |
-
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype)
|
| 367 |
-
|
| 368 |
-
def __call__(
|
| 369 |
-
self,
|
| 370 |
-
hidden_states: jnp.ndarray,
|
| 371 |
-
attention_mask: jnp.ndarray,
|
| 372 |
-
encoder_hidden_states: jnp.ndarray,
|
| 373 |
-
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
| 374 |
-
init_cache: bool = False,
|
| 375 |
-
deterministic: bool = True,
|
| 376 |
-
) -> Tuple[jnp.ndarray]:
|
| 377 |
-
residual = hidden_states
|
| 378 |
-
|
| 379 |
-
# Self Attention
|
| 380 |
-
hidden_states = self.self_attn(
|
| 381 |
-
hidden_states=hidden_states,
|
| 382 |
-
attention_mask=attention_mask,
|
| 383 |
-
init_cache=init_cache,
|
| 384 |
-
)
|
| 385 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 386 |
-
hidden_states = residual + hidden_states
|
| 387 |
-
hidden_states = self.self_attn_layer_norm(hidden_states)
|
| 388 |
-
|
| 389 |
-
# Cross-Attention Block
|
| 390 |
-
residual = hidden_states
|
| 391 |
-
|
| 392 |
-
hidden_states = self.encoder_attn(
|
| 393 |
-
hidden_states=hidden_states,
|
| 394 |
-
key_value_states=encoder_hidden_states,
|
| 395 |
-
attention_mask=encoder_attention_mask,
|
| 396 |
-
)
|
| 397 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 398 |
-
hidden_states = residual + hidden_states
|
| 399 |
-
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
| 400 |
-
|
| 401 |
-
# Fully Connected
|
| 402 |
-
residual = hidden_states
|
| 403 |
-
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
| 404 |
-
hidden_states = self.activation_dropout_layer(
|
| 405 |
-
hidden_states, deterministic=deterministic
|
| 406 |
-
)
|
| 407 |
-
hidden_states = self.fc2(hidden_states)
|
| 408 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 409 |
-
hidden_states = residual + hidden_states
|
| 410 |
-
hidden_states = self.final_layer_norm(hidden_states)
|
| 411 |
|
| 412 |
-
return hidden_states
|
| 413 |
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
|
|
|
|
|
|
| 418 |
|
| 419 |
def setup(self):
|
| 420 |
layer_module = (
|
|
@@ -426,35 +202,17 @@ class FlaxBartDecoderLayerCollection(nn.Module):
|
|
| 426 |
layer_module(self.config, name=str(i), dtype=self.dtype)
|
| 427 |
for i in range(self.config.decoder_layers)
|
| 428 |
]
|
| 429 |
-
|
| 430 |
-
def __call__(
|
| 431 |
-
self,
|
| 432 |
-
hidden_states,
|
| 433 |
-
attention_mask,
|
| 434 |
-
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
| 435 |
-
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
| 436 |
-
deterministic: bool = True,
|
| 437 |
-
init_cache: bool = False,
|
| 438 |
-
):
|
| 439 |
-
# decoder layers
|
| 440 |
-
for decoder_layer in self.layers:
|
| 441 |
-
hidden_states = decoder_layer(
|
| 442 |
-
hidden_states,
|
| 443 |
-
attention_mask=attention_mask,
|
| 444 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 445 |
-
encoder_attention_mask=encoder_attention_mask,
|
| 446 |
-
init_cache=init_cache,
|
| 447 |
-
deterministic=deterministic,
|
| 448 |
-
)
|
| 449 |
-
|
| 450 |
-
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
| 451 |
-
last_hidden_state=hidden_states
|
| 452 |
-
)
|
| 453 |
|
| 454 |
|
| 455 |
-
class
|
| 456 |
-
|
| 457 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
|
| 459 |
def setup(self):
|
| 460 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
|
@@ -463,12 +221,6 @@ class DalleBartEncoder(nn.Module):
|
|
| 463 |
self.padding_idx = self.config.pad_token_id
|
| 464 |
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
| 465 |
|
| 466 |
-
self.embed_tokens = nn.Embed(
|
| 467 |
-
self.config.encoder_vocab_size,
|
| 468 |
-
embed_dim,
|
| 469 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 470 |
-
)
|
| 471 |
-
|
| 472 |
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
| 473 |
# and adjust num_embeddings appropriately. Other models don't have this hack
|
| 474 |
self.offset = 0
|
|
@@ -478,42 +230,17 @@ class DalleBartEncoder(nn.Module):
|
|
| 478 |
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 479 |
)
|
| 480 |
self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype)
|
| 481 |
-
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype)
|
| 482 |
-
|
| 483 |
-
def __call__(
|
| 484 |
-
self,
|
| 485 |
-
input_ids,
|
| 486 |
-
attention_mask,
|
| 487 |
-
position_ids,
|
| 488 |
-
deterministic: bool = True,
|
| 489 |
-
):
|
| 490 |
-
input_shape = input_ids.shape
|
| 491 |
-
input_ids = input_ids.reshape(-1, input_shape[-1])
|
| 492 |
-
|
| 493 |
-
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
| 494 |
-
inputs_embeds = inputs_embeds.astype(self.dtype)
|
| 495 |
-
|
| 496 |
-
embed_pos = self.embed_positions(position_ids + self.offset)
|
| 497 |
-
embed_pos = embed_pos.astype(self.dtype)
|
| 498 |
-
|
| 499 |
-
hidden_states = inputs_embeds + embed_pos
|
| 500 |
-
hidden_states = self.layernorm_embedding(hidden_states)
|
| 501 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 502 |
-
|
| 503 |
-
outputs = self.layers(
|
| 504 |
-
hidden_states, attention_mask, deterministic=deterministic
|
| 505 |
-
)
|
| 506 |
-
|
| 507 |
-
return FlaxBaseModelOutput(
|
| 508 |
-
last_hidden_state=outputs.last_hidden_state,
|
| 509 |
-
hidden_states=outputs.hidden_states,
|
| 510 |
-
attentions=outputs.attentions,
|
| 511 |
-
)
|
| 512 |
|
| 513 |
|
| 514 |
-
class
|
| 515 |
-
|
| 516 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 517 |
|
| 518 |
def setup(self):
|
| 519 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
|
@@ -524,12 +251,6 @@ class DalleBartDecoder(nn.Module):
|
|
| 524 |
math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
|
| 525 |
)
|
| 526 |
|
| 527 |
-
self.embed_tokens = nn.Embed(
|
| 528 |
-
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
| 529 |
-
embed_dim,
|
| 530 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 531 |
-
)
|
| 532 |
-
|
| 533 |
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
| 534 |
# and adjust num_embeddings appropriately. Other models don't have this hack
|
| 535 |
self.offset = 0
|
|
@@ -540,122 +261,41 @@ class DalleBartDecoder(nn.Module):
|
|
| 540 |
)
|
| 541 |
|
| 542 |
self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype)
|
| 543 |
-
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype)
|
| 544 |
-
|
| 545 |
-
def __call__(
|
| 546 |
-
self,
|
| 547 |
-
input_ids,
|
| 548 |
-
attention_mask,
|
| 549 |
-
position_ids,
|
| 550 |
-
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
| 551 |
-
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
| 552 |
-
init_cache: bool = False,
|
| 553 |
-
deterministic: bool = True,
|
| 554 |
-
):
|
| 555 |
-
input_shape = input_ids.shape
|
| 556 |
-
input_ids = input_ids.reshape(-1, input_shape[-1])
|
| 557 |
|
| 558 |
-
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
| 559 |
-
inputs_embeds = inputs_embeds.astype(self.dtype)
|
| 560 |
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 569 |
-
|
| 570 |
-
outputs = self.layers(
|
| 571 |
-
hidden_states,
|
| 572 |
-
attention_mask,
|
| 573 |
-
encoder_hidden_states,
|
| 574 |
-
encoder_attention_mask,
|
| 575 |
-
deterministic=deterministic,
|
| 576 |
-
init_cache=init_cache,
|
| 577 |
-
)
|
| 578 |
-
|
| 579 |
-
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
| 580 |
-
last_hidden_state=outputs.last_hidden_state,
|
| 581 |
-
hidden_states=outputs.hidden_states,
|
| 582 |
-
attentions=outputs.attentions,
|
| 583 |
-
cross_attentions=outputs.cross_attentions,
|
| 584 |
-
)
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
class DalleBartModule(nn.Module):
|
| 588 |
-
config: DalleBartConfig
|
| 589 |
-
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
| 590 |
|
| 591 |
def setup(self):
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
return self.encoder
|
| 597 |
-
|
| 598 |
-
def _get_decoder_module(self):
|
| 599 |
-
return self.decoder
|
| 600 |
-
|
| 601 |
-
def __call__(
|
| 602 |
-
self,
|
| 603 |
-
input_ids,
|
| 604 |
-
attention_mask,
|
| 605 |
-
decoder_input_ids,
|
| 606 |
-
decoder_attention_mask,
|
| 607 |
-
position_ids,
|
| 608 |
-
decoder_position_ids,
|
| 609 |
-
return_dict: bool = True,
|
| 610 |
-
deterministic: bool = True,
|
| 611 |
-
):
|
| 612 |
-
encoder_outputs = self.encoder(
|
| 613 |
-
input_ids=input_ids,
|
| 614 |
-
attention_mask=attention_mask,
|
| 615 |
-
position_ids=position_ids,
|
| 616 |
-
deterministic=deterministic,
|
| 617 |
)
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
position_ids=decoder_position_ids,
|
| 623 |
-
encoder_hidden_states=encoder_outputs[0],
|
| 624 |
-
encoder_attention_mask=attention_mask,
|
| 625 |
-
deterministic=deterministic,
|
| 626 |
)
|
| 627 |
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
decoder_hidden_states=decoder_outputs.hidden_states,
|
| 634 |
-
decoder_attentions=decoder_outputs.attentions,
|
| 635 |
-
cross_attentions=decoder_outputs.cross_attentions,
|
| 636 |
-
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
| 637 |
-
encoder_hidden_states=encoder_outputs.hidden_states,
|
| 638 |
-
encoder_attentions=encoder_outputs.attentions,
|
| 639 |
)
|
| 640 |
|
| 641 |
|
| 642 |
-
class
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
def __init__(
|
| 648 |
-
self,
|
| 649 |
-
config: DalleBartConfig,
|
| 650 |
-
input_shape: Tuple[int] = (1, 1),
|
| 651 |
-
seed: int = 0,
|
| 652 |
-
dtype: jnp.dtype = jnp.float32,
|
| 653 |
-
**kwargs,
|
| 654 |
-
):
|
| 655 |
-
module = self.module_class(config=config, dtype=dtype)
|
| 656 |
-
super().__init__(
|
| 657 |
-
config, module, input_shape=input_shape, seed=seed, dtype=dtype, **kwargs
|
| 658 |
-
)
|
| 659 |
|
| 660 |
@property
|
| 661 |
def num_params(self):
|
|
@@ -664,213 +304,23 @@ class DalleBartPreTrainedModel(FlaxPreTrainedModel):
|
|
| 664 |
).values()
|
| 665 |
return sum(list(num_params))
|
| 666 |
|
| 667 |
-
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
| 668 |
-
# init input tensors
|
| 669 |
-
input_ids = jnp.zeros(input_shape, dtype="i4")
|
| 670 |
-
# make sure initialization pass will work for FlaxBartForSequenceClassificationModule
|
| 671 |
-
input_ids = jax.ops.index_update(input_ids, (..., -1), self.config.eos_token_id)
|
| 672 |
-
attention_mask = jnp.ones_like(input_ids)
|
| 673 |
-
decoder_input_ids = input_ids
|
| 674 |
-
decoder_attention_mask = jnp.ones_like(input_ids)
|
| 675 |
-
|
| 676 |
-
batch_size, sequence_length = input_ids.shape
|
| 677 |
-
position_ids = jnp.broadcast_to(
|
| 678 |
-
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 679 |
-
)
|
| 680 |
-
decoder_position_ids = jnp.broadcast_to(
|
| 681 |
-
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 682 |
-
)
|
| 683 |
-
|
| 684 |
-
params_rng, dropout_rng = jax.random.split(rng)
|
| 685 |
-
rngs = {"params": params_rng, "dropout": dropout_rng}
|
| 686 |
-
|
| 687 |
-
return self.module.init(
|
| 688 |
-
rngs,
|
| 689 |
-
input_ids,
|
| 690 |
-
attention_mask,
|
| 691 |
-
decoder_input_ids,
|
| 692 |
-
decoder_attention_mask,
|
| 693 |
-
position_ids,
|
| 694 |
-
decoder_position_ids,
|
| 695 |
-
)["params"]
|
| 696 |
-
|
| 697 |
-
def init_cache(self, batch_size, max_length, encoder_outputs):
|
| 698 |
-
r"""
|
| 699 |
-
Args:
|
| 700 |
-
batch_size (:obj:`int`):
|
| 701 |
-
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
| 702 |
-
max_length (:obj:`int`):
|
| 703 |
-
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
| 704 |
-
cache.
|
| 705 |
-
encoder_outputs (:obj:`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
|
| 706 |
-
``encoder_outputs`` consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`,
|
| 707 |
-
`optional`: :obj:`attentions`). :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length,
|
| 708 |
-
hidden_size)`, `optional`) is a sequence of hidden-states at the output of the last layer of the
|
| 709 |
-
encoder. Used in the cross-attention of the decoder.
|
| 710 |
-
"""
|
| 711 |
-
# init input variables to retrieve cache
|
| 712 |
-
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
| 713 |
-
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
| 714 |
-
decoder_position_ids = jnp.broadcast_to(
|
| 715 |
-
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]),
|
| 716 |
-
decoder_input_ids.shape,
|
| 717 |
-
)
|
| 718 |
-
|
| 719 |
-
def _decoder_forward(
|
| 720 |
-
module,
|
| 721 |
-
decoder_input_ids,
|
| 722 |
-
decoder_attention_mask,
|
| 723 |
-
decoder_position_ids,
|
| 724 |
-
**kwargs,
|
| 725 |
-
):
|
| 726 |
-
decoder_module = module._get_decoder_module()
|
| 727 |
-
return decoder_module(
|
| 728 |
-
decoder_input_ids,
|
| 729 |
-
decoder_attention_mask,
|
| 730 |
-
decoder_position_ids,
|
| 731 |
-
**kwargs,
|
| 732 |
-
)
|
| 733 |
-
|
| 734 |
-
init_variables = self.module.init(
|
| 735 |
-
jax.random.PRNGKey(0),
|
| 736 |
-
decoder_input_ids=decoder_input_ids,
|
| 737 |
-
decoder_attention_mask=decoder_attention_mask,
|
| 738 |
-
decoder_position_ids=decoder_position_ids,
|
| 739 |
-
encoder_hidden_states=encoder_outputs[0],
|
| 740 |
-
init_cache=True,
|
| 741 |
-
method=_decoder_forward, # we only need to call the decoder to init the cache
|
| 742 |
-
)
|
| 743 |
-
return unfreeze(init_variables["cache"])
|
| 744 |
-
|
| 745 |
-
def encode(
|
| 746 |
-
self,
|
| 747 |
-
input_ids: jnp.ndarray,
|
| 748 |
-
attention_mask: Optional[jnp.ndarray] = None,
|
| 749 |
-
position_ids: Optional[jnp.ndarray] = None,
|
| 750 |
-
train: bool = False,
|
| 751 |
-
params: dict = None,
|
| 752 |
-
dropout_rng: PRNGKey = None,
|
| 753 |
-
):
|
| 754 |
-
r"""
|
| 755 |
-
Returns:
|
| 756 |
-
|
| 757 |
-
Example::
|
| 758 |
-
|
| 759 |
-
>>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
| 760 |
-
|
| 761 |
-
>>> model = FlaxBartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
| 762 |
-
>>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
| 763 |
-
|
| 764 |
-
>>> text = "My friends are cool but they eat too many carbs."
|
| 765 |
-
>>> inputs = tokenizer(text, max_length=1024, return_tensors='jax')
|
| 766 |
-
>>> encoder_outputs = model.encode(**inputs)
|
| 767 |
-
"""
|
| 768 |
-
if attention_mask is None:
|
| 769 |
-
attention_mask = jnp.ones_like(input_ids)
|
| 770 |
-
if position_ids is None:
|
| 771 |
-
batch_size, sequence_length = input_ids.shape
|
| 772 |
-
position_ids = jnp.broadcast_to(
|
| 773 |
-
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 774 |
-
)
|
| 775 |
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
|
| 784 |
-
|
| 785 |
-
return self.module.apply(
|
| 786 |
-
{"params": params or self.params},
|
| 787 |
-
input_ids=jnp.array(input_ids, dtype="i4"),
|
| 788 |
-
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
| 789 |
-
position_ids=jnp.array(position_ids, dtype="i4"),
|
| 790 |
-
deterministic=not train,
|
| 791 |
-
rngs=rngs,
|
| 792 |
-
method=_encoder_forward,
|
| 793 |
-
)
|
| 794 |
-
|
| 795 |
-
def __call__(
|
| 796 |
-
self,
|
| 797 |
-
input_ids: jnp.ndarray,
|
| 798 |
-
attention_mask: Optional[jnp.ndarray] = None,
|
| 799 |
-
decoder_input_ids: Optional[jnp.ndarray] = None,
|
| 800 |
-
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
| 801 |
-
position_ids: Optional[jnp.ndarray] = None,
|
| 802 |
-
decoder_position_ids: Optional[jnp.ndarray] = None,
|
| 803 |
-
return_dict: Optional[bool] = None,
|
| 804 |
-
train: bool = False,
|
| 805 |
-
params: dict = None,
|
| 806 |
-
dropout_rng: PRNGKey = None,
|
| 807 |
-
):
|
| 808 |
-
return_dict = (
|
| 809 |
-
return_dict if return_dict is not None else self.config.return_dict
|
| 810 |
-
)
|
| 811 |
-
|
| 812 |
-
# prepare encoder inputs
|
| 813 |
-
if attention_mask is None:
|
| 814 |
-
attention_mask = jnp.ones_like(input_ids)
|
| 815 |
-
if position_ids is None:
|
| 816 |
-
batch_size, sequence_length = input_ids.shape
|
| 817 |
-
position_ids = jnp.broadcast_to(
|
| 818 |
-
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 819 |
-
)
|
| 820 |
-
|
| 821 |
-
# prepare decoder inputs
|
| 822 |
-
if decoder_input_ids is None:
|
| 823 |
-
decoder_input_ids = shift_tokens_right(
|
| 824 |
-
input_ids,
|
| 825 |
-
self.config.pad_token_id,
|
| 826 |
-
decoder_start_token_id=self.config.decoder_start_token_id,
|
| 827 |
-
)
|
| 828 |
-
if decoder_attention_mask is None:
|
| 829 |
-
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
| 830 |
-
if decoder_position_ids is None:
|
| 831 |
-
batch_size, sequence_length = decoder_input_ids.shape
|
| 832 |
-
decoder_position_ids = jnp.broadcast_to(
|
| 833 |
-
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 834 |
-
)
|
| 835 |
-
|
| 836 |
-
# Handle any PRNG if needed
|
| 837 |
-
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
| 838 |
-
|
| 839 |
-
return self.module.apply(
|
| 840 |
-
{"params": params or self.params},
|
| 841 |
-
input_ids=jnp.array(input_ids, dtype="i4"),
|
| 842 |
-
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
| 843 |
-
position_ids=jnp.array(position_ids, dtype="i4"),
|
| 844 |
-
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
| 845 |
-
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
| 846 |
-
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
| 847 |
-
deterministic=not train,
|
| 848 |
-
rngs=rngs,
|
| 849 |
-
)
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
class DalleBartForConditionalGenerationModule(nn.Module):
|
| 853 |
-
config: DalleBartConfig
|
| 854 |
-
dtype: jnp.dtype = jnp.float32
|
| 855 |
-
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
|
| 856 |
|
| 857 |
def setup(self):
|
| 858 |
-
self.model =
|
| 859 |
self.lm_head = nn.Dense(
|
| 860 |
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
| 861 |
use_bias=False,
|
| 862 |
dtype=self.dtype,
|
| 863 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
| 864 |
)
|
| 865 |
-
self.final_logits_bias = self.param(
|
| 866 |
-
"final_logits_bias", self.bias_init, (1, self.config.image_vocab_size + 1)
|
| 867 |
-
)
|
| 868 |
-
|
| 869 |
-
def _get_encoder_module(self):
|
| 870 |
-
return self.model.encoder
|
| 871 |
-
|
| 872 |
-
def _get_decoder_module(self):
|
| 873 |
-
return self.model.decoder
|
| 874 |
|
| 875 |
def __call__(
|
| 876 |
self,
|
|
@@ -880,6 +330,9 @@ class DalleBartForConditionalGenerationModule(nn.Module):
|
|
| 880 |
decoder_attention_mask,
|
| 881 |
position_ids,
|
| 882 |
decoder_position_ids,
|
|
|
|
|
|
|
|
|
|
| 883 |
deterministic: bool = True,
|
| 884 |
):
|
| 885 |
outputs = self.model(
|
|
@@ -889,6 +342,9 @@ class DalleBartForConditionalGenerationModule(nn.Module):
|
|
| 889 |
decoder_attention_mask=decoder_attention_mask,
|
| 890 |
position_ids=position_ids,
|
| 891 |
decoder_position_ids=decoder_position_ids,
|
|
|
|
|
|
|
|
|
|
| 892 |
deterministic=deterministic,
|
| 893 |
)
|
| 894 |
|
|
@@ -902,6 +358,10 @@ class DalleBartForConditionalGenerationModule(nn.Module):
|
|
| 902 |
else:
|
| 903 |
lm_logits = self.lm_head(hidden_states)
|
| 904 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 905 |
return FlaxSeq2SeqLMOutput(
|
| 906 |
logits=lm_logits,
|
| 907 |
decoder_hidden_states=outputs.decoder_hidden_states,
|
|
@@ -913,9 +373,16 @@ class DalleBartForConditionalGenerationModule(nn.Module):
|
|
| 913 |
)
|
| 914 |
|
| 915 |
|
| 916 |
-
class
|
| 917 |
-
|
| 918 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 919 |
|
| 920 |
def decode(
|
| 921 |
self,
|
|
@@ -925,30 +392,27 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
| 925 |
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
| 926 |
decoder_position_ids: Optional[jnp.ndarray] = None,
|
| 927 |
past_key_values: dict = None,
|
|
|
|
|
|
|
|
|
|
| 928 |
train: bool = False,
|
| 929 |
params: dict = None,
|
| 930 |
dropout_rng: PRNGKey = None,
|
| 931 |
):
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
>>> decoder_start_token_id = model.config.decoder_start_token_id
|
| 947 |
-
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
|
| 948 |
|
| 949 |
-
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
|
| 950 |
-
>>> logits = outputs.logits
|
| 951 |
-
"""
|
| 952 |
encoder_hidden_states = encoder_outputs[0]
|
| 953 |
if encoder_attention_mask is None:
|
| 954 |
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
|
@@ -1010,7 +474,6 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
| 1010 |
else:
|
| 1011 |
lm_logits = module.lm_head(hidden_states)
|
| 1012 |
|
| 1013 |
-
lm_logits += module.final_logits_bias
|
| 1014 |
return lm_logits, outputs
|
| 1015 |
|
| 1016 |
outputs = self.module.apply(
|
|
@@ -1020,6 +483,9 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
| 1020 |
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
| 1021 |
encoder_hidden_states=encoder_hidden_states,
|
| 1022 |
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
|
|
|
|
|
|
|
|
|
| 1023 |
deterministic=not train,
|
| 1024 |
rngs=rngs,
|
| 1025 |
mutable=mutable,
|
|
@@ -1031,58 +497,21 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
| 1031 |
else:
|
| 1032 |
(lm_logits, decoder_outputs), past = outputs
|
| 1033 |
|
| 1034 |
-
|
| 1035 |
-
|
| 1036 |
-
|
| 1037 |
-
|
| 1038 |
-
|
| 1039 |
-
|
|
|
|
|
|
|
|
|
|
| 1040 |
|
| 1041 |
# add updated cache to model output
|
| 1042 |
-
if past_key_values is not None:
|
| 1043 |
outputs["past_key_values"] = unfreeze(past["cache"])
|
| 1044 |
return outputs
|
|
|
|
|
|
|
| 1045 |
|
| 1046 |
return outputs
|
| 1047 |
-
|
| 1048 |
-
def prepare_inputs_for_generation(
|
| 1049 |
-
self,
|
| 1050 |
-
decoder_input_ids,
|
| 1051 |
-
max_length,
|
| 1052 |
-
attention_mask: Optional[jnp.DeviceArray] = None,
|
| 1053 |
-
decoder_attention_mask: Optional[jnp.DeviceArray] = None,
|
| 1054 |
-
encoder_outputs=None,
|
| 1055 |
-
**kwargs,
|
| 1056 |
-
):
|
| 1057 |
-
# initializing the cache
|
| 1058 |
-
batch_size, seq_length = decoder_input_ids.shape
|
| 1059 |
-
|
| 1060 |
-
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
|
| 1061 |
-
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
| 1062 |
-
# But since the decoder uses a causal mask, those positions are masked anyways.
|
| 1063 |
-
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
| 1064 |
-
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
| 1065 |
-
if decoder_attention_mask is not None:
|
| 1066 |
-
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
|
| 1067 |
-
extended_attention_mask = lax.dynamic_update_slice(
|
| 1068 |
-
extended_attention_mask, decoder_attention_mask, (0, 0)
|
| 1069 |
-
)
|
| 1070 |
-
else:
|
| 1071 |
-
position_ids = jnp.broadcast_to(
|
| 1072 |
-
jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
|
| 1073 |
-
)
|
| 1074 |
-
|
| 1075 |
-
return {
|
| 1076 |
-
"past_key_values": past_key_values,
|
| 1077 |
-
"encoder_outputs": encoder_outputs,
|
| 1078 |
-
"encoder_attention_mask": attention_mask,
|
| 1079 |
-
"decoder_attention_mask": extended_attention_mask,
|
| 1080 |
-
"decoder_position_ids": position_ids,
|
| 1081 |
-
}
|
| 1082 |
-
|
| 1083 |
-
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
| 1084 |
-
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
| 1085 |
-
model_kwargs["decoder_position_ids"] = (
|
| 1086 |
-
model_kwargs["decoder_position_ids"][:, -1:] + 1
|
| 1087 |
-
)
|
| 1088 |
-
return model_kwargs
|
|
|
|
| 1 |
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team and the DalleBart team. All rights reserved.
|
| 3 |
#
|
| 4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
# you may not use this file except in compliance with the License.
|
|
|
|
| 12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
# See the License for the specific language governing permissions and
|
| 14 |
# limitations under the License.
|
| 15 |
+
""" DalleBart model. """
|
| 16 |
|
| 17 |
import math
|
| 18 |
from functools import partial
|
| 19 |
+
from typing import Optional
|
| 20 |
|
| 21 |
import flax.linen as nn
|
| 22 |
import jax
|
| 23 |
import jax.numpy as jnp
|
| 24 |
+
from flax.core.frozen_dict import unfreeze
|
| 25 |
+
from flax.linen import make_causal_mask
|
|
|
|
|
|
|
| 26 |
from flax.traverse_util import flatten_dict
|
|
|
|
| 27 |
from jax.random import PRNGKey
|
| 28 |
from transformers.modeling_flax_outputs import (
|
|
|
|
|
|
|
| 29 |
FlaxCausalLMOutputWithCrossAttentions,
|
| 30 |
FlaxSeq2SeqLMOutput,
|
|
|
|
| 31 |
)
|
| 32 |
+
from transformers.modeling_flax_utils import ACT2FN
|
| 33 |
from transformers.utils import logging
|
| 34 |
|
| 35 |
+
from transformers.models.bart.modeling_flax_bart import (
|
| 36 |
+
FlaxBartAttention,
|
| 37 |
+
FlaxBartEncoderLayer,
|
| 38 |
+
FlaxBartDecoderLayer,
|
| 39 |
+
FlaxBartEncoderLayerCollection,
|
| 40 |
+
FlaxBartDecoderLayerCollection,
|
| 41 |
+
FlaxBartEncoder,
|
| 42 |
+
FlaxBartDecoder,
|
| 43 |
+
FlaxBartModule,
|
| 44 |
+
FlaxBartForConditionalGenerationModule,
|
| 45 |
+
FlaxBartPreTrainedModel,
|
| 46 |
+
FlaxBartForConditionalGeneration,
|
| 47 |
+
)
|
| 48 |
|
| 49 |
logger = logging.get_logger(__name__)
|
| 50 |
|
| 51 |
|
| 52 |
+
class FlaxBartAttention(FlaxBartAttention):
|
|
|
|
|
|
|
| 53 |
"""
|
| 54 |
+
Edits:
|
| 55 |
+
- causal mask considers embed_dim instead of max_position_embeddings
|
| 56 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
def setup(self) -> None:
|
| 59 |
self.head_dim = self.embed_dim // self.num_heads
|
| 60 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 61 |
+
raise ValueError(
|
| 62 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
| 63 |
+
f" and `num_heads`: {self.num_heads})."
|
| 64 |
+
)
|
| 65 |
|
| 66 |
dense = partial(
|
| 67 |
nn.Dense,
|
| 68 |
self.embed_dim,
|
| 69 |
+
use_bias=self.bias,
|
| 70 |
dtype=self.dtype,
|
| 71 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
| 72 |
)
|
|
|
|
| 81 |
jnp.ones((1, self.embed_dim), dtype="bool"), dtype="bool"
|
| 82 |
)
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
class FlaxBartEncoderLayer(FlaxBartEncoderLayer):
|
| 86 |
+
"""
|
| 87 |
+
Edits:
|
| 88 |
+
- no bias
|
| 89 |
+
- use custom FlaxBartAttention
|
| 90 |
+
"""
|
| 91 |
|
| 92 |
def setup(self) -> None:
|
| 93 |
self.embed_dim = self.config.d_model
|
|
|
|
| 96 |
embed_dim=self.embed_dim,
|
| 97 |
num_heads=self.config.encoder_attention_heads,
|
| 98 |
dropout=self.config.attention_dropout,
|
| 99 |
+
bias=False,
|
| 100 |
dtype=self.dtype,
|
| 101 |
)
|
| 102 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
| 103 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
| 104 |
self.activation_fn = ACT2FN[self.config.activation_function]
|
| 105 |
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
|
|
|
| 115 |
use_bias=False,
|
| 116 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
| 117 |
)
|
| 118 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
|
| 121 |
+
class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection):
|
| 122 |
+
"""
|
| 123 |
+
Edits:
|
| 124 |
+
- use custom FlaxBartEncoderLayer
|
| 125 |
+
- allow Gradient Checkpointing (nn.remat)
|
| 126 |
+
"""
|
| 127 |
|
| 128 |
def setup(self):
|
| 129 |
layer_module = (
|
|
|
|
| 135 |
layer_module(self.config, name=str(i), dtype=self.dtype)
|
| 136 |
for i in range(self.config.encoder_layers)
|
| 137 |
]
|
| 138 |
+
self.layerdrop = self.config.encoder_layerdrop
|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
+
class FlaxBartDecoderLayer(FlaxBartDecoderLayer):
|
| 142 |
+
"""
|
| 143 |
+
Edits:
|
| 144 |
+
- no bias
|
| 145 |
+
- uses custom FlaxBartAttention
|
| 146 |
+
"""
|
| 147 |
|
| 148 |
def setup(self) -> None:
|
| 149 |
self.embed_dim = self.config.d_model
|
|
|
|
| 153 |
num_heads=self.config.decoder_attention_heads,
|
| 154 |
dropout=self.config.attention_dropout,
|
| 155 |
causal=True,
|
| 156 |
+
bias=False,
|
| 157 |
dtype=self.dtype,
|
| 158 |
)
|
| 159 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
| 160 |
self.activation_fn = ACT2FN[self.config.activation_function]
|
| 161 |
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
| 162 |
|
| 163 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
| 164 |
self.encoder_attn = FlaxBartAttention(
|
| 165 |
config=self.config,
|
| 166 |
embed_dim=self.embed_dim,
|
| 167 |
num_heads=self.config.decoder_attention_heads,
|
| 168 |
dropout=self.config.attention_dropout,
|
| 169 |
+
bias=False,
|
| 170 |
dtype=self.dtype,
|
| 171 |
)
|
| 172 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
| 173 |
self.fc1 = nn.Dense(
|
| 174 |
self.config.encoder_ffn_dim,
|
| 175 |
dtype=self.dtype,
|
|
|
|
| 182 |
use_bias=False,
|
| 183 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
| 184 |
)
|
| 185 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
|
|
|
| 187 |
|
| 188 |
+
class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection):
|
| 189 |
+
"""
|
| 190 |
+
Edits:
|
| 191 |
+
- use custom FlaxBartDecoderLayer
|
| 192 |
+
- allow Gradient Checkpointing (nn.remat)
|
| 193 |
+
"""
|
| 194 |
|
| 195 |
def setup(self):
|
| 196 |
layer_module = (
|
|
|
|
| 202 |
layer_module(self.config, name=str(i), dtype=self.dtype)
|
| 203 |
for i in range(self.config.decoder_layers)
|
| 204 |
]
|
| 205 |
+
self.layerdrop = self.config.decoder_layerdrop
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
|
| 208 |
+
class FlaxBartEncoder(FlaxBartEncoder):
|
| 209 |
+
"""
|
| 210 |
+
Edits:
|
| 211 |
+
- offset set to 0 (no padding token)
|
| 212 |
+
- use max_text_length instead of max_position_embeddings
|
| 213 |
+
- use custom FlaxBartEncoderLayerCollection
|
| 214 |
+
- embed_tokens cannot be None (issue at compile time)
|
| 215 |
+
"""
|
| 216 |
|
| 217 |
def setup(self):
|
| 218 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
|
|
|
| 221 |
self.padding_idx = self.config.pad_token_id
|
| 222 |
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
| 223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
| 225 |
# and adjust num_embeddings appropriately. Other models don't have this hack
|
| 226 |
self.offset = 0
|
|
|
|
| 230 |
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 231 |
)
|
| 232 |
self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype)
|
| 233 |
+
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
|
| 236 |
+
class FlaxBartDecoder(FlaxBartDecoder):
|
| 237 |
+
"""
|
| 238 |
+
Edits:
|
| 239 |
+
- offset set to 0 (no padding token)
|
| 240 |
+
- use image_length + 1 (for BOS) instead of max_position_embeddings
|
| 241 |
+
- use custom FlaxBartDecoderLayerCollection
|
| 242 |
+
- embed_tokens cannot be None (issue at compile time)
|
| 243 |
+
"""
|
| 244 |
|
| 245 |
def setup(self):
|
| 246 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
|
|
|
| 251 |
math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
|
| 252 |
)
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
| 255 |
# and adjust num_embeddings appropriately. Other models don't have this hack
|
| 256 |
self.offset = 0
|
|
|
|
| 261 |
)
|
| 262 |
|
| 263 |
self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype)
|
| 264 |
+
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
|
|
|
|
|
|
| 266 |
|
| 267 |
+
class FlaxBartModule(FlaxBartModule):
|
| 268 |
+
"""
|
| 269 |
+
Edits
|
| 270 |
+
- use custom FlaxBartEncoder & FlaxBartDecoder
|
| 271 |
+
- use separate embeddings for Encoder & Decoder
|
| 272 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
def setup(self):
|
| 275 |
+
encoder_embed_tokens = nn.Embed(
|
| 276 |
+
self.config.encoder_vocab_size,
|
| 277 |
+
self.config.d_model,
|
| 278 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
)
|
| 280 |
+
decoder_embed_tokens = nn.Embed(
|
| 281 |
+
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
| 282 |
+
self.config.d_model,
|
| 283 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
)
|
| 285 |
|
| 286 |
+
self.encoder = FlaxBartEncoder(
|
| 287 |
+
self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens
|
| 288 |
+
)
|
| 289 |
+
self.decoder = FlaxBartDecoder(
|
| 290 |
+
self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
)
|
| 292 |
|
| 293 |
|
| 294 |
+
class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel):
|
| 295 |
+
"""
|
| 296 |
+
Edits:
|
| 297 |
+
- added num_params property
|
| 298 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
@property
|
| 301 |
def num_params(self):
|
|
|
|
| 304 |
).values()
|
| 305 |
return sum(list(num_params))
|
| 306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
|
| 308 |
+
class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
| 309 |
+
"""
|
| 310 |
+
Edits:
|
| 311 |
+
- no bias
|
| 312 |
+
- lm_head set to image_vocab_size + 1 (for BOS)
|
| 313 |
+
- uses custom FlaxBartModule
|
| 314 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
def setup(self):
|
| 317 |
+
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
|
| 318 |
self.lm_head = nn.Dense(
|
| 319 |
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
| 320 |
use_bias=False,
|
| 321 |
dtype=self.dtype,
|
| 322 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
| 323 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
def __call__(
|
| 326 |
self,
|
|
|
|
| 330 |
decoder_attention_mask,
|
| 331 |
position_ids,
|
| 332 |
decoder_position_ids,
|
| 333 |
+
output_attentions: bool = False,
|
| 334 |
+
output_hidden_states: bool = False,
|
| 335 |
+
return_dict: bool = True,
|
| 336 |
deterministic: bool = True,
|
| 337 |
):
|
| 338 |
outputs = self.model(
|
|
|
|
| 342 |
decoder_attention_mask=decoder_attention_mask,
|
| 343 |
position_ids=position_ids,
|
| 344 |
decoder_position_ids=decoder_position_ids,
|
| 345 |
+
output_attentions=output_attentions,
|
| 346 |
+
output_hidden_states=output_hidden_states,
|
| 347 |
+
return_dict=return_dict,
|
| 348 |
deterministic=deterministic,
|
| 349 |
)
|
| 350 |
|
|
|
|
| 358 |
else:
|
| 359 |
lm_logits = self.lm_head(hidden_states)
|
| 360 |
|
| 361 |
+
if not return_dict:
|
| 362 |
+
output = (lm_logits,) + outputs[1:]
|
| 363 |
+
return output
|
| 364 |
+
|
| 365 |
return FlaxSeq2SeqLMOutput(
|
| 366 |
logits=lm_logits,
|
| 367 |
decoder_hidden_states=outputs.decoder_hidden_states,
|
|
|
|
| 373 |
)
|
| 374 |
|
| 375 |
|
| 376 |
+
class DalleBart(FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration):
|
| 377 |
+
"""
|
| 378 |
+
Edits:
|
| 379 |
+
- renamed from FlaxBartForConditionalGeneration
|
| 380 |
+
- uses custom FlaxBartPreTrainedModel
|
| 381 |
+
- uses custom FlaxBartForConditionalGenerationModule
|
| 382 |
+
- no bias in decode method
|
| 383 |
+
"""
|
| 384 |
+
|
| 385 |
+
module_class = FlaxBartForConditionalGenerationModule
|
| 386 |
|
| 387 |
def decode(
|
| 388 |
self,
|
|
|
|
| 392 |
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
| 393 |
decoder_position_ids: Optional[jnp.ndarray] = None,
|
| 394 |
past_key_values: dict = None,
|
| 395 |
+
output_attentions: Optional[bool] = None,
|
| 396 |
+
output_hidden_states: Optional[bool] = None,
|
| 397 |
+
return_dict: Optional[bool] = None,
|
| 398 |
train: bool = False,
|
| 399 |
params: dict = None,
|
| 400 |
dropout_rng: PRNGKey = None,
|
| 401 |
):
|
| 402 |
+
output_attentions = (
|
| 403 |
+
output_attentions
|
| 404 |
+
if output_attentions is not None
|
| 405 |
+
else self.config.output_attentions
|
| 406 |
+
)
|
| 407 |
+
output_hidden_states = (
|
| 408 |
+
output_hidden_states
|
| 409 |
+
if output_hidden_states is not None
|
| 410 |
+
else self.config.output_hidden_states
|
| 411 |
+
)
|
| 412 |
+
return_dict = (
|
| 413 |
+
return_dict if return_dict is not None else self.config.return_dict
|
| 414 |
+
)
|
|
|
|
|
|
|
|
|
|
| 415 |
|
|
|
|
|
|
|
|
|
|
| 416 |
encoder_hidden_states = encoder_outputs[0]
|
| 417 |
if encoder_attention_mask is None:
|
| 418 |
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
|
|
|
| 474 |
else:
|
| 475 |
lm_logits = module.lm_head(hidden_states)
|
| 476 |
|
|
|
|
| 477 |
return lm_logits, outputs
|
| 478 |
|
| 479 |
outputs = self.module.apply(
|
|
|
|
| 483 |
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
| 484 |
encoder_hidden_states=encoder_hidden_states,
|
| 485 |
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
| 486 |
+
output_attentions=output_attentions,
|
| 487 |
+
output_hidden_states=output_hidden_states,
|
| 488 |
+
return_dict=return_dict,
|
| 489 |
deterministic=not train,
|
| 490 |
rngs=rngs,
|
| 491 |
mutable=mutable,
|
|
|
|
| 497 |
else:
|
| 498 |
(lm_logits, decoder_outputs), past = outputs
|
| 499 |
|
| 500 |
+
if return_dict:
|
| 501 |
+
outputs = FlaxCausalLMOutputWithCrossAttentions(
|
| 502 |
+
logits=lm_logits,
|
| 503 |
+
hidden_states=decoder_outputs.hidden_states,
|
| 504 |
+
attentions=decoder_outputs.attentions,
|
| 505 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
| 506 |
+
)
|
| 507 |
+
else:
|
| 508 |
+
outputs = (lm_logits,) + decoder_outputs[1:]
|
| 509 |
|
| 510 |
# add updated cache to model output
|
| 511 |
+
if past_key_values is not None and return_dict:
|
| 512 |
outputs["past_key_values"] = unfreeze(past["cache"])
|
| 513 |
return outputs
|
| 514 |
+
elif past_key_values is not None and not return_dict:
|
| 515 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
| 516 |
|
| 517 |
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|