|
|
import pandas as pd |
|
|
import numpy as np |
|
|
from datetime import datetime |
|
|
from data import extract_model_data |
|
|
from utils import COLORS |
|
|
import gradio as gr |
|
|
import plotly.express as px |
|
|
import plotly.graph_objects as go |
|
|
|
|
|
def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict: |
|
|
daily_stats = [] |
|
|
dates = sorted(historical_df['date'].unique()) |
|
|
for date in dates: |
|
|
date_data = historical_df[historical_df['date'] == date] |
|
|
amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0 |
|
|
amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0 |
|
|
amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0 |
|
|
amd_total = amd_passed + amd_failed + amd_skipped |
|
|
amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0 |
|
|
|
|
|
nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0 |
|
|
nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0 |
|
|
nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0 |
|
|
nvidia_total = nvidia_passed + nvidia_failed + nvidia_skipped |
|
|
nvidia_failure_rate = (nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0 |
|
|
|
|
|
daily_stats.append({ |
|
|
'date': date, |
|
|
'amd_failure_rate': amd_failure_rate, |
|
|
'nvidia_failure_rate': nvidia_failure_rate, |
|
|
'amd_passed': amd_passed, |
|
|
'amd_failed': amd_failed, |
|
|
'amd_skipped': amd_skipped, |
|
|
'nvidia_passed': nvidia_passed, |
|
|
'nvidia_failed': nvidia_failed, |
|
|
'nvidia_skipped': nvidia_skipped |
|
|
}) |
|
|
|
|
|
failure_rate_data = [] |
|
|
for i, stat in enumerate(daily_stats): |
|
|
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate'] if i > 0 else 0 |
|
|
nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate'] if i > 0 else 0 |
|
|
failure_rate_data.extend([ |
|
|
{'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change}, |
|
|
{'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change} |
|
|
]) |
|
|
failure_rate_df = pd.DataFrame(failure_rate_data) |
|
|
|
|
|
amd_data = [] |
|
|
for i, stat in enumerate(daily_stats): |
|
|
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] if i > 0 else 0 |
|
|
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed'] if i > 0 else 0 |
|
|
skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped'] if i > 0 else 0 |
|
|
amd_data.extend([ |
|
|
{'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change}, |
|
|
{'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change}, |
|
|
{'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change} |
|
|
]) |
|
|
amd_df = pd.DataFrame(amd_data) |
|
|
|
|
|
nvidia_data = [] |
|
|
for i, stat in enumerate(daily_stats): |
|
|
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed'] if i > 0 else 0 |
|
|
failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed'] if i > 0 else 0 |
|
|
skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped'] if i > 0 else 0 |
|
|
nvidia_data.extend([ |
|
|
{'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change}, |
|
|
{'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change}, |
|
|
{'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change} |
|
|
]) |
|
|
nvidia_df = pd.DataFrame(nvidia_data) |
|
|
|
|
|
return { |
|
|
'failure_rates_df': failure_rate_df, |
|
|
'amd_tests_df': amd_df, |
|
|
'nvidia_tests_df': nvidia_df, |
|
|
} |
|
|
|
|
|
def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> dict: |
|
|
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()] |
|
|
|
|
|
if model_data.empty: |
|
|
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': [], 'change': []}) |
|
|
return {'amd_df': empty_df.copy(), 'nvidia_df': empty_df.copy()} |
|
|
|
|
|
dates = sorted(model_data['date'].unique()) |
|
|
amd_data = [] |
|
|
nvidia_data = [] |
|
|
for i, date in enumerate(dates): |
|
|
date_data = model_data[model_data['date'] == date] |
|
|
row = date_data.iloc[0] |
|
|
|
|
|
amd_passed = row.get('success_amd', 0) |
|
|
amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0) |
|
|
amd_skipped = row.get('skipped_amd', 0) |
|
|
prev_row = model_data[model_data['date'] == dates[i-1]].iloc[0] if i > 0 and not model_data[model_data['date'] == dates[i-1]].empty else None |
|
|
amd_passed_change = amd_passed - (prev_row.get('success_amd', 0) if prev_row is not None else 0) |
|
|
amd_failed_change = amd_failed - (prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0) if prev_row is not None else 0) |
|
|
amd_skipped_change = amd_skipped - (prev_row.get('skipped_amd', 0) if prev_row is not None else 0) |
|
|
amd_data.extend([ |
|
|
{'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': amd_passed_change}, |
|
|
{'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': amd_failed_change}, |
|
|
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': amd_skipped_change} |
|
|
]) |
|
|
|
|
|
nvidia_passed = row.get('success_nvidia', 0) |
|
|
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0) |
|
|
nvidia_skipped = row.get('skipped_nvidia', 0) |
|
|
if prev_row is not None: |
|
|
prev_nvidia_passed = prev_row.get('success_nvidia', 0) |
|
|
prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0) |
|
|
prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0) |
|
|
else: |
|
|
prev_nvidia_passed = prev_nvidia_failed = prev_nvidia_skipped = 0 |
|
|
nvidia_data.extend([ |
|
|
{'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed - prev_nvidia_passed}, |
|
|
{'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed - prev_nvidia_failed}, |
|
|
{'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped - prev_nvidia_skipped} |
|
|
]) |
|
|
|
|
|
return {'amd_df': pd.DataFrame(amd_data), 'nvidia_df': pd.DataFrame(nvidia_data)} |
|
|
|
|
|
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict: |
|
|
if historical_df.empty or 'date' not in historical_df.columns: |
|
|
|
|
|
empty_fig = go.Figure() |
|
|
empty_fig.update_layout( |
|
|
title="No historical data available", |
|
|
height=500, |
|
|
font=dict(size=16, color='#CCCCCC'), |
|
|
paper_bgcolor='#000000', |
|
|
plot_bgcolor='#1a1a1a', |
|
|
margin=dict(b=130) |
|
|
) |
|
|
return { |
|
|
'failure_rates': empty_fig, |
|
|
'amd_tests': empty_fig, |
|
|
'nvidia_tests': empty_fig |
|
|
} |
|
|
|
|
|
daily_stats = [] |
|
|
dates = sorted(historical_df['date'].unique()) |
|
|
|
|
|
for date in dates: |
|
|
date_data = historical_df[historical_df['date'] == date] |
|
|
|
|
|
|
|
|
|
|
|
total_amd_tests = 0 |
|
|
total_amd_failures = 0 |
|
|
total_nvidia_tests = 0 |
|
|
total_nvidia_failures = 0 |
|
|
amd_passed = 0 |
|
|
amd_failed = 0 |
|
|
amd_skipped = 0 |
|
|
nvidia_passed = 0 |
|
|
nvidia_failed = 0 |
|
|
nvidia_skipped = 0 |
|
|
|
|
|
for _, row in date_data.iterrows(): |
|
|
amd_stats, nvidia_stats = extract_model_data(row)[:2] |
|
|
|
|
|
|
|
|
amd_total = amd_stats['passed'] + amd_stats['failed'] + amd_stats['error'] |
|
|
if amd_total > 0: |
|
|
total_amd_tests += amd_total |
|
|
total_amd_failures += amd_stats['failed'] + amd_stats['error'] |
|
|
|
|
|
|
|
|
amd_passed += amd_stats['passed'] |
|
|
amd_failed += amd_stats['failed'] + amd_stats['error'] |
|
|
amd_skipped += amd_stats['skipped'] |
|
|
|
|
|
|
|
|
nvidia_total = nvidia_stats['passed'] + nvidia_stats['failed'] + nvidia_stats['error'] |
|
|
if nvidia_total > 0: |
|
|
total_nvidia_tests += nvidia_total |
|
|
total_nvidia_failures += nvidia_stats['failed'] + nvidia_stats['error'] |
|
|
|
|
|
|
|
|
nvidia_passed += nvidia_stats['passed'] |
|
|
nvidia_failed += nvidia_stats['failed'] + nvidia_stats['error'] |
|
|
nvidia_skipped += nvidia_stats['skipped'] |
|
|
|
|
|
amd_failure_rate = (total_amd_failures / total_amd_tests * 100) if total_amd_tests > 0 else 0 |
|
|
nvidia_failure_rate = (total_nvidia_failures / total_nvidia_tests * 100) if total_nvidia_tests > 0 else 0 |
|
|
|
|
|
daily_stats.append({ |
|
|
'date': date, |
|
|
'amd_failure_rate': amd_failure_rate, |
|
|
'nvidia_failure_rate': nvidia_failure_rate, |
|
|
'amd_passed': amd_passed, |
|
|
'amd_failed': amd_failed, |
|
|
'amd_skipped': amd_skipped, |
|
|
'nvidia_passed': nvidia_passed, |
|
|
'nvidia_failed': nvidia_failed, |
|
|
'nvidia_skipped': nvidia_skipped |
|
|
}) |
|
|
|
|
|
failure_rate_data = [] |
|
|
for i, stat in enumerate(daily_stats): |
|
|
amd_change = nvidia_change = 0 |
|
|
if i > 0: |
|
|
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate'] |
|
|
nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate'] |
|
|
|
|
|
failure_rate_data.extend([ |
|
|
{'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change}, |
|
|
{'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change} |
|
|
]) |
|
|
|
|
|
failure_rate_df = pd.DataFrame(failure_rate_data) |
|
|
|
|
|
amd_data = [] |
|
|
for i, stat in enumerate(daily_stats): |
|
|
passed_change = failed_change = skipped_change = 0 |
|
|
if i > 0: |
|
|
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] |
|
|
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed'] |
|
|
skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped'] |
|
|
|
|
|
amd_data.extend([ |
|
|
{'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change}, |
|
|
{'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change}, |
|
|
{'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change} |
|
|
]) |
|
|
|
|
|
amd_df = pd.DataFrame(amd_data) |
|
|
|
|
|
nvidia_data = [] |
|
|
for i, stat in enumerate(daily_stats): |
|
|
passed_change = failed_change = skipped_change = 0 |
|
|
if i > 0: |
|
|
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed'] |
|
|
failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed'] |
|
|
skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped'] |
|
|
|
|
|
nvidia_data.extend([ |
|
|
{'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change}, |
|
|
{'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change}, |
|
|
{'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change} |
|
|
]) |
|
|
|
|
|
nvidia_df = pd.DataFrame(nvidia_data) |
|
|
|
|
|
|
|
|
fig_failure_rates = go.Figure() |
|
|
|
|
|
|
|
|
nvidia_data = failure_rate_df[failure_rate_df['platform'] == 'NVIDIA'] |
|
|
if not nvidia_data.empty: |
|
|
fig_failure_rates.add_trace(go.Scatter( |
|
|
x=nvidia_data['date'], |
|
|
y=nvidia_data['failure_rate'], |
|
|
mode='lines+markers', |
|
|
name='NVIDIA', |
|
|
line=dict(color='#76B900', width=3), |
|
|
marker=dict(size=12, color='#FFFFFF', line=dict(color='#76B900', width=2)), |
|
|
hovertemplate='<b>NVIDIA</b><br>Date: %{x}<br>Failure Rate: %{y:.2f}%<extra></extra>' |
|
|
)) |
|
|
|
|
|
|
|
|
amd_data = failure_rate_df[failure_rate_df['platform'] == 'AMD'] |
|
|
if not amd_data.empty: |
|
|
fig_failure_rates.add_trace(go.Scatter( |
|
|
x=amd_data['date'], |
|
|
y=amd_data['failure_rate'], |
|
|
mode='lines+markers', |
|
|
name='AMD', |
|
|
line=dict(color='#ED1C24', width=3), |
|
|
marker=dict(size=12, color='#404040', line=dict(color='#ED1C24', width=2)), |
|
|
hovertemplate='<b>AMD</b><br>Date: %{x}<br>Failure Rate: %{y:.2f}%<extra></extra>' |
|
|
)) |
|
|
|
|
|
fig_failure_rates.update_layout( |
|
|
title="Overall Failure Rates Over Time", |
|
|
height=500, |
|
|
font=dict(size=16, color='#CCCCCC'), |
|
|
paper_bgcolor='#000000', |
|
|
plot_bgcolor='#1a1a1a', |
|
|
title_font_size=20, |
|
|
legend=dict( |
|
|
font=dict(size=16), |
|
|
bgcolor='rgba(0,0,0,0.5)', |
|
|
orientation="h", |
|
|
yanchor="bottom", |
|
|
y=-0.4, |
|
|
xanchor="center", |
|
|
x=0.5 |
|
|
), |
|
|
xaxis=dict(title='Date', title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True), |
|
|
yaxis=dict(title='Failure Rate (%)', title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True), |
|
|
hovermode='x unified', |
|
|
margin=dict(b=130) |
|
|
) |
|
|
|
|
|
|
|
|
fig_amd = px.line( |
|
|
amd_df, |
|
|
x='date', |
|
|
y='count', |
|
|
color='test_type', |
|
|
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']}, |
|
|
title="AMD Test Results Over Time", |
|
|
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'} |
|
|
) |
|
|
fig_amd.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3)) |
|
|
fig_amd.update_layout( |
|
|
height=500, |
|
|
font=dict(size=16, color='#CCCCCC'), |
|
|
paper_bgcolor='#000000', |
|
|
plot_bgcolor='#1a1a1a', |
|
|
title_font_size=20, |
|
|
legend=dict( |
|
|
font=dict(size=16), |
|
|
bgcolor='rgba(0,0,0,0.5)', |
|
|
orientation="h", |
|
|
yanchor="bottom", |
|
|
y=-0.4, |
|
|
xanchor="center", |
|
|
x=0.5 |
|
|
), |
|
|
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True), |
|
|
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True), |
|
|
hovermode='x unified', |
|
|
margin=dict(b=130) |
|
|
) |
|
|
|
|
|
|
|
|
fig_nvidia = px.line( |
|
|
nvidia_df, |
|
|
x='date', |
|
|
y='count', |
|
|
color='test_type', |
|
|
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']}, |
|
|
title="NVIDIA Test Results Over Time", |
|
|
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'} |
|
|
) |
|
|
fig_nvidia.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3)) |
|
|
fig_nvidia.update_layout( |
|
|
height=500, |
|
|
font=dict(size=16, color='#CCCCCC'), |
|
|
paper_bgcolor='#000000', |
|
|
plot_bgcolor='#1a1a1a', |
|
|
title_font_size=20, |
|
|
legend=dict( |
|
|
font=dict(size=16), |
|
|
bgcolor='rgba(0,0,0,0.5)', |
|
|
orientation="h", |
|
|
yanchor="bottom", |
|
|
y=-0.4, |
|
|
xanchor="center", |
|
|
x=0.5 |
|
|
), |
|
|
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True), |
|
|
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True), |
|
|
hovermode='x unified', |
|
|
margin=dict(b=130) |
|
|
) |
|
|
|
|
|
return { |
|
|
'failure_rates': fig_failure_rates, |
|
|
'amd_tests': fig_amd, |
|
|
'nvidia_tests': fig_nvidia |
|
|
} |
|
|
|
|
|
|
|
|
def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict: |
|
|
if historical_df.empty or 'date' not in historical_df.columns: |
|
|
|
|
|
empty_fig_amd = go.Figure() |
|
|
empty_fig_amd.update_layout( |
|
|
title=f"{model_name.upper()} - AMD Results Over Time", |
|
|
height=500, |
|
|
font=dict(size=16, color='#CCCCCC'), |
|
|
paper_bgcolor='#000000', |
|
|
plot_bgcolor='#1a1a1a', |
|
|
margin=dict(b=130) |
|
|
) |
|
|
empty_fig_nvidia = go.Figure() |
|
|
empty_fig_nvidia.update_layout( |
|
|
title=f"{model_name.upper()} - NVIDIA Results Over Time", |
|
|
height=500, |
|
|
font=dict(size=16, color='#CCCCCC'), |
|
|
paper_bgcolor='#000000', |
|
|
plot_bgcolor='#1a1a1a', |
|
|
margin=dict(b=130) |
|
|
) |
|
|
return { |
|
|
'amd_plot': empty_fig_amd, |
|
|
'nvidia_plot': empty_fig_nvidia |
|
|
} |
|
|
|
|
|
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()] |
|
|
|
|
|
if model_data.empty: |
|
|
|
|
|
empty_fig_amd = go.Figure() |
|
|
empty_fig_amd.update_layout( |
|
|
title=f"{model_name.upper()} - AMD Results Over Time", |
|
|
height=500, |
|
|
font=dict(size=16, color='#CCCCCC'), |
|
|
paper_bgcolor='#000000', |
|
|
plot_bgcolor='#1a1a1a', |
|
|
margin=dict(b=130) |
|
|
) |
|
|
empty_fig_nvidia = go.Figure() |
|
|
empty_fig_nvidia.update_layout( |
|
|
title=f"{model_name.upper()} - NVIDIA Results Over Time", |
|
|
height=500, |
|
|
font=dict(size=16, color='#CCCCCC'), |
|
|
paper_bgcolor='#000000', |
|
|
plot_bgcolor='#1a1a1a', |
|
|
margin=dict(b=130) |
|
|
) |
|
|
return { |
|
|
'amd_plot': empty_fig_amd, |
|
|
'nvidia_plot': empty_fig_nvidia |
|
|
} |
|
|
|
|
|
dates = sorted(model_data['date'].unique()) |
|
|
|
|
|
amd_data = [] |
|
|
nvidia_data = [] |
|
|
|
|
|
for i, date in enumerate(dates): |
|
|
date_data = model_data[model_data['date'] == date] |
|
|
|
|
|
if not date_data.empty: |
|
|
row = date_data.iloc[0] |
|
|
|
|
|
amd_passed = row.get('success_amd', 0) |
|
|
amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0) |
|
|
amd_skipped = row.get('skipped_amd', 0) |
|
|
|
|
|
passed_change = failed_change = skipped_change = 0 |
|
|
if i > 0: |
|
|
prev_date_data = model_data[model_data['date'] == dates[i-1]] |
|
|
if not prev_date_data.empty: |
|
|
prev_row = prev_date_data.iloc[0] |
|
|
prev_amd_passed = prev_row.get('success_amd', 0) |
|
|
prev_amd_failed = prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0) |
|
|
prev_amd_skipped = prev_row.get('skipped_amd', 0) |
|
|
|
|
|
passed_change = amd_passed - prev_amd_passed |
|
|
failed_change = amd_failed - prev_amd_failed |
|
|
skipped_change = amd_skipped - prev_amd_skipped |
|
|
|
|
|
amd_data.extend([ |
|
|
{'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': passed_change}, |
|
|
{'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': failed_change}, |
|
|
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': skipped_change} |
|
|
]) |
|
|
|
|
|
nvidia_passed = row.get('success_nvidia', 0) |
|
|
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0) |
|
|
nvidia_skipped = row.get('skipped_nvidia', 0) |
|
|
|
|
|
nvidia_passed_change = nvidia_failed_change = nvidia_skipped_change = 0 |
|
|
if i > 0: |
|
|
prev_date_data = model_data[model_data['date'] == dates[i-1]] |
|
|
if not prev_date_data.empty: |
|
|
prev_row = prev_date_data.iloc[0] |
|
|
prev_nvidia_passed = prev_row.get('success_nvidia', 0) |
|
|
prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0) |
|
|
prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0) |
|
|
|
|
|
nvidia_passed_change = nvidia_passed - prev_nvidia_passed |
|
|
nvidia_failed_change = nvidia_failed - prev_nvidia_failed |
|
|
nvidia_skipped_change = nvidia_skipped - prev_nvidia_skipped |
|
|
|
|
|
nvidia_data.extend([ |
|
|
{'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed_change}, |
|
|
{'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed_change}, |
|
|
{'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped_change} |
|
|
]) |
|
|
|
|
|
amd_df = pd.DataFrame(amd_data) |
|
|
nvidia_df = pd.DataFrame(nvidia_data) |
|
|
|
|
|
|
|
|
fig_amd = px.line( |
|
|
amd_df, |
|
|
x='date', |
|
|
y='count', |
|
|
color='test_type', |
|
|
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']}, |
|
|
title=f"{model_name.upper()} - AMD Results Over Time", |
|
|
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'} |
|
|
) |
|
|
fig_amd.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3)) |
|
|
fig_amd.update_layout( |
|
|
height=500, |
|
|
font=dict(size=16, color='#CCCCCC'), |
|
|
paper_bgcolor='#000000', |
|
|
plot_bgcolor='#1a1a1a', |
|
|
title_font_size=20, |
|
|
legend=dict( |
|
|
font=dict(size=16), |
|
|
bgcolor='rgba(0,0,0,0.5)', |
|
|
orientation="h", |
|
|
yanchor="bottom", |
|
|
y=-0.4, |
|
|
xanchor="center", |
|
|
x=0.5 |
|
|
), |
|
|
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True), |
|
|
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True), |
|
|
hovermode='x unified', |
|
|
margin=dict(b=130) |
|
|
) |
|
|
|
|
|
|
|
|
fig_nvidia = px.line( |
|
|
nvidia_df, |
|
|
x='date', |
|
|
y='count', |
|
|
color='test_type', |
|
|
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']}, |
|
|
title=f"{model_name.upper()} - NVIDIA Results Over Time", |
|
|
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'} |
|
|
) |
|
|
fig_nvidia.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3)) |
|
|
fig_nvidia.update_layout( |
|
|
height=500, |
|
|
font=dict(size=16, color='#CCCCCC'), |
|
|
paper_bgcolor='#000000', |
|
|
plot_bgcolor='#1a1a1a', |
|
|
title_font_size=20, |
|
|
legend=dict( |
|
|
font=dict(size=16), |
|
|
bgcolor='rgba(0,0,0,0.5)', |
|
|
orientation="h", |
|
|
yanchor="bottom", |
|
|
y=-0.4, |
|
|
xanchor="center", |
|
|
x=0.5 |
|
|
), |
|
|
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True), |
|
|
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True), |
|
|
hovermode='x unified', |
|
|
margin=dict(b=130) |
|
|
) |
|
|
|
|
|
return { |
|
|
'amd_plot': fig_amd, |
|
|
'nvidia_plot': fig_nvidia |
|
|
} |