some more code factorization :)
Browse files- time_series_gradio.py +184 -512
time_series_gradio.py
CHANGED
|
@@ -10,539 +10,211 @@ import plotly.graph_objects as go
|
|
| 10 |
def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict:
|
| 11 |
daily_stats = []
|
| 12 |
dates = sorted(historical_df['date'].unique())
|
|
|
|
| 13 |
for date in dates:
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
nvidia_failure_rate = (nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0
|
| 26 |
-
|
| 27 |
-
daily_stats.append({
|
| 28 |
-
'date': date,
|
| 29 |
-
'amd_failure_rate': amd_failure_rate,
|
| 30 |
-
'nvidia_failure_rate': nvidia_failure_rate,
|
| 31 |
-
'amd_passed': amd_passed,
|
| 32 |
-
'amd_failed': amd_failed,
|
| 33 |
-
'amd_skipped': amd_skipped,
|
| 34 |
-
'nvidia_passed': nvidia_passed,
|
| 35 |
-
'nvidia_failed': nvidia_failed,
|
| 36 |
-
'nvidia_skipped': nvidia_skipped
|
| 37 |
-
})
|
| 38 |
|
| 39 |
failure_rate_data = []
|
| 40 |
-
for i,
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
{'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change}
|
| 46 |
-
])
|
| 47 |
-
failure_rate_df = pd.DataFrame(failure_rate_data)
|
| 48 |
-
|
| 49 |
-
amd_data = []
|
| 50 |
-
for i, stat in enumerate(daily_stats):
|
| 51 |
-
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] if i > 0 else 0
|
| 52 |
-
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed'] if i > 0 else 0
|
| 53 |
-
skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped'] if i > 0 else 0
|
| 54 |
-
amd_data.extend([
|
| 55 |
-
{'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change},
|
| 56 |
-
{'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change},
|
| 57 |
-
{'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
|
| 58 |
-
])
|
| 59 |
-
amd_df = pd.DataFrame(amd_data)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
{'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
|
| 70 |
-
])
|
| 71 |
-
nvidia_df = pd.DataFrame(nvidia_data)
|
| 72 |
|
| 73 |
-
return {
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
'nvidia_tests_df': nvidia_df,
|
| 77 |
-
}
|
| 78 |
|
| 79 |
def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> dict:
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
return {'amd_df': empty_df.copy(), 'nvidia_df': empty_df.copy()}
|
| 85 |
-
|
| 86 |
-
dates = sorted(model_data['date'].unique())
|
| 87 |
-
amd_data = []
|
| 88 |
-
nvidia_data = []
|
| 89 |
-
for i, date in enumerate(dates):
|
| 90 |
-
date_data = model_data[model_data['date'] == date]
|
| 91 |
-
row = date_data.iloc[0]
|
| 92 |
-
|
| 93 |
-
amd_passed = row.get('success_amd', 0)
|
| 94 |
-
amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0)
|
| 95 |
-
amd_skipped = row.get('skipped_amd', 0)
|
| 96 |
-
prev_row = model_data[model_data['date'] == dates[i-1]].iloc[0] if i > 0 and not model_data[model_data['date'] == dates[i-1]].empty else None
|
| 97 |
-
amd_passed_change = amd_passed - (prev_row.get('success_amd', 0) if prev_row is not None else 0)
|
| 98 |
-
amd_failed_change = amd_failed - (prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0) if prev_row is not None else 0)
|
| 99 |
-
amd_skipped_change = amd_skipped - (prev_row.get('skipped_amd', 0) if prev_row is not None else 0)
|
| 100 |
-
amd_data.extend([
|
| 101 |
-
{'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': amd_passed_change},
|
| 102 |
-
{'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': amd_failed_change},
|
| 103 |
-
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': amd_skipped_change}
|
| 104 |
-
])
|
| 105 |
-
|
| 106 |
-
nvidia_passed = row.get('success_nvidia', 0)
|
| 107 |
-
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0)
|
| 108 |
-
nvidia_skipped = row.get('skipped_nvidia', 0)
|
| 109 |
-
if prev_row is not None:
|
| 110 |
-
prev_nvidia_passed = prev_row.get('success_nvidia', 0)
|
| 111 |
-
prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0)
|
| 112 |
-
prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0)
|
| 113 |
-
else:
|
| 114 |
-
prev_nvidia_passed = prev_nvidia_failed = prev_nvidia_skipped = 0
|
| 115 |
-
nvidia_data.extend([
|
| 116 |
-
{'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed - prev_nvidia_passed},
|
| 117 |
-
{'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed - prev_nvidia_failed},
|
| 118 |
-
{'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped - prev_nvidia_skipped}
|
| 119 |
-
])
|
| 120 |
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
if historical_df.empty or 'date' not in historical_df.columns:
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
empty_fig.update_layout(
|
| 128 |
-
title="No historical data available",
|
| 129 |
-
height=500,
|
| 130 |
-
font=dict(size=16, color='#CCCCCC'),
|
| 131 |
-
paper_bgcolor='#000000',
|
| 132 |
-
plot_bgcolor='#1a1a1a',
|
| 133 |
-
margin=dict(b=130)
|
| 134 |
-
)
|
| 135 |
-
return {
|
| 136 |
-
'failure_rates': empty_fig,
|
| 137 |
-
'amd_tests': empty_fig,
|
| 138 |
-
'nvidia_tests': empty_fig
|
| 139 |
-
}
|
| 140 |
|
| 141 |
daily_stats = []
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
date_data = historical_df[historical_df['date'] == date]
|
| 146 |
-
|
| 147 |
-
# Calculate failure rates using the same logic as summary_page.py
|
| 148 |
-
# This includes ERROR tests in failures and excludes SKIPPED from total
|
| 149 |
-
total_amd_tests = 0
|
| 150 |
-
total_amd_failures = 0
|
| 151 |
-
total_nvidia_tests = 0
|
| 152 |
-
total_nvidia_failures = 0
|
| 153 |
-
amd_passed = 0
|
| 154 |
-
amd_failed = 0
|
| 155 |
-
amd_skipped = 0
|
| 156 |
-
nvidia_passed = 0
|
| 157 |
-
nvidia_failed = 0
|
| 158 |
-
nvidia_skipped = 0
|
| 159 |
|
| 160 |
-
for
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
amd_failed += amd_stats['failed'] + amd_stats['error']
|
| 172 |
-
amd_skipped += amd_stats['skipped']
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
{'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change}
|
| 210 |
-
])
|
| 211 |
-
|
| 212 |
-
failure_rate_df = pd.DataFrame(failure_rate_data)
|
| 213 |
-
|
| 214 |
-
amd_data = []
|
| 215 |
-
for i, stat in enumerate(daily_stats):
|
| 216 |
-
passed_change = failed_change = skipped_change = 0
|
| 217 |
-
if i > 0:
|
| 218 |
-
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed']
|
| 219 |
-
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed']
|
| 220 |
-
skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped']
|
| 221 |
-
|
| 222 |
-
amd_data.extend([
|
| 223 |
-
{'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change},
|
| 224 |
-
{'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change},
|
| 225 |
-
{'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
|
| 226 |
-
])
|
| 227 |
-
|
| 228 |
-
amd_df = pd.DataFrame(amd_data)
|
| 229 |
-
|
| 230 |
-
nvidia_data = []
|
| 231 |
-
for i, stat in enumerate(daily_stats):
|
| 232 |
-
passed_change = failed_change = skipped_change = 0
|
| 233 |
-
if i > 0:
|
| 234 |
-
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed']
|
| 235 |
-
failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed']
|
| 236 |
-
skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped']
|
| 237 |
-
|
| 238 |
-
nvidia_data.extend([
|
| 239 |
-
{'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change},
|
| 240 |
-
{'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change},
|
| 241 |
-
{'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
|
| 242 |
-
])
|
| 243 |
-
|
| 244 |
-
nvidia_df = pd.DataFrame(nvidia_data)
|
| 245 |
-
|
| 246 |
-
# Create Plotly figure for failure rates with alternating colors
|
| 247 |
-
fig_failure_rates = go.Figure()
|
| 248 |
-
|
| 249 |
-
# Add NVIDIA line (green line with white markers - Barcelona style)
|
| 250 |
-
nvidia_data = failure_rate_df[failure_rate_df['platform'] == 'NVIDIA']
|
| 251 |
-
if not nvidia_data.empty:
|
| 252 |
-
fig_failure_rates.add_trace(go.Scatter(
|
| 253 |
-
x=nvidia_data['date'],
|
| 254 |
-
y=nvidia_data['failure_rate'],
|
| 255 |
-
mode='lines+markers',
|
| 256 |
-
name='NVIDIA',
|
| 257 |
-
line=dict(color='#76B900', width=3), # Green line
|
| 258 |
-
marker=dict(size=12, color='#FFFFFF', line=dict(color='#76B900', width=2)), # White markers with green border
|
| 259 |
-
hovertemplate='<b>NVIDIA</b><br>Date: %{x}<br>Failure Rate: %{y:.2f}%<extra></extra>'
|
| 260 |
-
))
|
| 261 |
-
|
| 262 |
-
# Add AMD line (red line with dark gray markers - Barcelona style)
|
| 263 |
-
amd_data = failure_rate_df[failure_rate_df['platform'] == 'AMD']
|
| 264 |
-
if not amd_data.empty:
|
| 265 |
-
fig_failure_rates.add_trace(go.Scatter(
|
| 266 |
-
x=amd_data['date'],
|
| 267 |
-
y=amd_data['failure_rate'],
|
| 268 |
-
mode='lines+markers',
|
| 269 |
-
name='AMD',
|
| 270 |
-
line=dict(color='#ED1C24', width=3), # Red line
|
| 271 |
-
marker=dict(size=12, color='#404040', line=dict(color='#ED1C24', width=2)), # Dark gray markers with red border
|
| 272 |
-
hovertemplate='<b>AMD</b><br>Date: %{x}<br>Failure Rate: %{y:.2f}%<extra></extra>'
|
| 273 |
-
))
|
| 274 |
-
|
| 275 |
-
fig_failure_rates.update_layout(
|
| 276 |
-
title="Overall Failure Rates Over Time",
|
| 277 |
-
height=500,
|
| 278 |
-
font=dict(size=16, color='#CCCCCC'),
|
| 279 |
-
paper_bgcolor='#000000',
|
| 280 |
-
plot_bgcolor='#1a1a1a',
|
| 281 |
-
title_font_size=20,
|
| 282 |
-
legend=dict(
|
| 283 |
-
font=dict(size=16),
|
| 284 |
-
bgcolor='rgba(0,0,0,0.5)',
|
| 285 |
-
orientation="h",
|
| 286 |
-
yanchor="bottom",
|
| 287 |
-
y=-0.4,
|
| 288 |
-
xanchor="center",
|
| 289 |
-
x=0.5
|
| 290 |
-
),
|
| 291 |
xaxis=dict(title='Date', title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 292 |
yaxis=dict(title='Failure Rate (%)', title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 293 |
-
hovermode='x unified',
|
| 294 |
-
|
| 295 |
-
)
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
paper_bgcolor='#000000',
|
| 312 |
-
plot_bgcolor='#1a1a1a',
|
| 313 |
-
title_font_size=20,
|
| 314 |
-
legend=dict(
|
| 315 |
-
font=dict(size=16),
|
| 316 |
-
bgcolor='rgba(0,0,0,0.5)',
|
| 317 |
-
orientation="h",
|
| 318 |
-
yanchor="bottom",
|
| 319 |
-
y=-0.4,
|
| 320 |
-
xanchor="center",
|
| 321 |
-
x=0.5
|
| 322 |
-
),
|
| 323 |
-
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 324 |
-
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 325 |
-
hovermode='x unified',
|
| 326 |
-
margin=dict(b=130)
|
| 327 |
-
)
|
| 328 |
-
|
| 329 |
-
# Create Plotly figure for NVIDIA tests
|
| 330 |
-
fig_nvidia = px.line(
|
| 331 |
-
nvidia_df,
|
| 332 |
-
x='date',
|
| 333 |
-
y='count',
|
| 334 |
-
color='test_type',
|
| 335 |
-
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 336 |
-
title="NVIDIA Test Results Over Time",
|
| 337 |
-
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'}
|
| 338 |
-
)
|
| 339 |
-
fig_nvidia.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3))
|
| 340 |
-
fig_nvidia.update_layout(
|
| 341 |
-
height=500,
|
| 342 |
-
font=dict(size=16, color='#CCCCCC'),
|
| 343 |
-
paper_bgcolor='#000000',
|
| 344 |
-
plot_bgcolor='#1a1a1a',
|
| 345 |
-
title_font_size=20,
|
| 346 |
-
legend=dict(
|
| 347 |
-
font=dict(size=16),
|
| 348 |
-
bgcolor='rgba(0,0,0,0.5)',
|
| 349 |
-
orientation="h",
|
| 350 |
-
yanchor="bottom",
|
| 351 |
-
y=-0.4,
|
| 352 |
-
xanchor="center",
|
| 353 |
-
x=0.5
|
| 354 |
-
),
|
| 355 |
-
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 356 |
-
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 357 |
-
hovermode='x unified',
|
| 358 |
-
margin=dict(b=130)
|
| 359 |
-
)
|
| 360 |
-
|
| 361 |
-
return {
|
| 362 |
-
'failure_rates': fig_failure_rates,
|
| 363 |
-
'amd_tests': fig_amd,
|
| 364 |
-
'nvidia_tests': fig_nvidia
|
| 365 |
-
}
|
| 366 |
-
|
| 367 |
|
| 368 |
def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict:
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
height=500,
|
| 375 |
-
font=dict(size=16, color='#CCCCCC'),
|
| 376 |
-
paper_bgcolor='#000000',
|
| 377 |
-
plot_bgcolor='#1a1a1a',
|
| 378 |
-
margin=dict(b=130)
|
| 379 |
-
)
|
| 380 |
-
empty_fig_nvidia = go.Figure()
|
| 381 |
-
empty_fig_nvidia.update_layout(
|
| 382 |
-
title=f"{model_name.upper()} - NVIDIA Results Over Time",
|
| 383 |
-
height=500,
|
| 384 |
-
font=dict(size=16, color='#CCCCCC'),
|
| 385 |
-
paper_bgcolor='#000000',
|
| 386 |
-
plot_bgcolor='#1a1a1a',
|
| 387 |
-
margin=dict(b=130)
|
| 388 |
-
)
|
| 389 |
-
return {
|
| 390 |
-
'amd_plot': empty_fig_amd,
|
| 391 |
-
'nvidia_plot': empty_fig_nvidia
|
| 392 |
-
}
|
| 393 |
-
|
| 394 |
-
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 395 |
-
|
| 396 |
-
if model_data.empty:
|
| 397 |
-
# Create empty Plotly figures
|
| 398 |
-
empty_fig_amd = go.Figure()
|
| 399 |
-
empty_fig_amd.update_layout(
|
| 400 |
-
title=f"{model_name.upper()} - AMD Results Over Time",
|
| 401 |
-
height=500,
|
| 402 |
-
font=dict(size=16, color='#CCCCCC'),
|
| 403 |
-
paper_bgcolor='#000000',
|
| 404 |
-
plot_bgcolor='#1a1a1a',
|
| 405 |
-
margin=dict(b=130)
|
| 406 |
-
)
|
| 407 |
-
empty_fig_nvidia = go.Figure()
|
| 408 |
-
empty_fig_nvidia.update_layout(
|
| 409 |
-
title=f"{model_name.upper()} - NVIDIA Results Over Time",
|
| 410 |
-
height=500,
|
| 411 |
-
font=dict(size=16, color='#CCCCCC'),
|
| 412 |
-
paper_bgcolor='#000000',
|
| 413 |
-
plot_bgcolor='#1a1a1a',
|
| 414 |
-
margin=dict(b=130)
|
| 415 |
-
)
|
| 416 |
-
return {
|
| 417 |
-
'amd_plot': empty_fig_amd,
|
| 418 |
-
'nvidia_plot': empty_fig_nvidia
|
| 419 |
-
}
|
| 420 |
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
prev_row = prev_date_data.iloc[0]
|
| 441 |
-
prev_amd_passed = prev_row.get('success_amd', 0)
|
| 442 |
-
prev_amd_failed = prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0)
|
| 443 |
-
prev_amd_skipped = prev_row.get('skipped_amd', 0)
|
| 444 |
-
|
| 445 |
-
passed_change = amd_passed - prev_amd_passed
|
| 446 |
-
failed_change = amd_failed - prev_amd_failed
|
| 447 |
-
skipped_change = amd_skipped - prev_amd_skipped
|
| 448 |
-
|
| 449 |
-
amd_data.extend([
|
| 450 |
-
{'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': passed_change},
|
| 451 |
-
{'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': failed_change},
|
| 452 |
-
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': skipped_change}
|
| 453 |
-
])
|
| 454 |
-
|
| 455 |
-
nvidia_passed = row.get('success_nvidia', 0)
|
| 456 |
-
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0)
|
| 457 |
-
nvidia_skipped = row.get('skipped_nvidia', 0)
|
| 458 |
|
| 459 |
-
|
| 460 |
if i > 0:
|
| 461 |
-
|
| 462 |
-
if not
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
nvidia_passed_change = nvidia_passed - prev_nvidia_passed
|
| 469 |
-
nvidia_failed_change = nvidia_failed - prev_nvidia_failed
|
| 470 |
-
nvidia_skipped_change = nvidia_skipped - prev_nvidia_skipped
|
| 471 |
|
| 472 |
-
|
| 473 |
-
{'date': date, 'count':
|
| 474 |
-
{'date': date, 'count':
|
| 475 |
-
{'date': date, 'count':
|
| 476 |
])
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
paper_bgcolor='#000000',
|
| 496 |
-
plot_bgcolor='#1a1a1a',
|
| 497 |
-
title_font_size=20,
|
| 498 |
-
legend=dict(
|
| 499 |
-
font=dict(size=16),
|
| 500 |
-
bgcolor='rgba(0,0,0,0.5)',
|
| 501 |
-
orientation="h",
|
| 502 |
-
yanchor="bottom",
|
| 503 |
-
y=-0.4,
|
| 504 |
-
xanchor="center",
|
| 505 |
-
x=0.5
|
| 506 |
-
),
|
| 507 |
-
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 508 |
-
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 509 |
-
hovermode='x unified',
|
| 510 |
-
margin=dict(b=130)
|
| 511 |
-
)
|
| 512 |
-
|
| 513 |
-
# Create Plotly figure for NVIDIA
|
| 514 |
-
fig_nvidia = px.line(
|
| 515 |
-
nvidia_df,
|
| 516 |
-
x='date',
|
| 517 |
-
y='count',
|
| 518 |
-
color='test_type',
|
| 519 |
-
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 520 |
-
title=f"{model_name.upper()} - NVIDIA Results Over Time",
|
| 521 |
-
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'}
|
| 522 |
-
)
|
| 523 |
-
fig_nvidia.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3))
|
| 524 |
-
fig_nvidia.update_layout(
|
| 525 |
-
height=500,
|
| 526 |
-
font=dict(size=16, color='#CCCCCC'),
|
| 527 |
-
paper_bgcolor='#000000',
|
| 528 |
-
plot_bgcolor='#1a1a1a',
|
| 529 |
-
title_font_size=20,
|
| 530 |
-
legend=dict(
|
| 531 |
-
font=dict(size=16),
|
| 532 |
-
bgcolor='rgba(0,0,0,0.5)',
|
| 533 |
-
orientation="h",
|
| 534 |
-
yanchor="bottom",
|
| 535 |
-
y=-0.4,
|
| 536 |
-
xanchor="center",
|
| 537 |
-
x=0.5
|
| 538 |
-
),
|
| 539 |
-
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 540 |
-
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 541 |
-
hovermode='x unified',
|
| 542 |
-
margin=dict(b=130)
|
| 543 |
-
)
|
| 544 |
-
|
| 545 |
-
return {
|
| 546 |
-
'amd_plot': fig_amd,
|
| 547 |
-
'nvidia_plot': fig_nvidia
|
| 548 |
-
}
|
|
|
|
| 10 |
def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict:
|
| 11 |
daily_stats = []
|
| 12 |
dates = sorted(historical_df['date'].unique())
|
| 13 |
+
|
| 14 |
for date in dates:
|
| 15 |
+
dd = historical_df[historical_df['date'] == date]
|
| 16 |
+
stats = {}
|
| 17 |
+
for platform in ['amd', 'nvidia']:
|
| 18 |
+
p, f, s = (dd[f'success_{platform}'].sum() if f'success_{platform}' in dd.columns else 0,
|
| 19 |
+
(dd[f'failed_multi_no_{platform}'].sum() + dd[f'failed_single_no_{platform}'].sum()) if f'failed_multi_no_{platform}' in dd.columns else 0,
|
| 20 |
+
dd[f'skipped_{platform}'].sum() if f'skipped_{platform}' in dd.columns else 0)
|
| 21 |
+
tot = p + f + s
|
| 22 |
+
stats.update({f'{platform}_passed': p, f'{platform}_failed': f, f'{platform}_skipped': s,
|
| 23 |
+
f'{platform}_failure_rate': (f / tot * 100) if tot > 0 else 0})
|
| 24 |
+
stats['date'] = date
|
| 25 |
+
daily_stats.append(stats)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
failure_rate_data = []
|
| 28 |
+
for i, s in enumerate(daily_stats):
|
| 29 |
+
for p in ['amd', 'nvidia']:
|
| 30 |
+
chg = s[f'{p}_failure_rate'] - daily_stats[i-1][f'{p}_failure_rate'] if i > 0 else 0
|
| 31 |
+
failure_rate_data.append({'date': s['date'], 'failure_rate': s[f'{p}_failure_rate'],
|
| 32 |
+
'platform': p.upper(), 'change': chg})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
def build_test_data(platform):
|
| 35 |
+
data = []
|
| 36 |
+
for i, s in enumerate(daily_stats):
|
| 37 |
+
for tt in ['passed', 'failed', 'skipped']:
|
| 38 |
+
chg = s[f'{platform}_{tt}'] - daily_stats[i-1][f'{platform}_{tt}'] if i > 0 else 0
|
| 39 |
+
data.append({'date': s['date'], 'count': s[f'{platform}_{tt}'],
|
| 40 |
+
'test_type': tt.capitalize(), 'change': chg})
|
| 41 |
+
return pd.DataFrame(data)
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
return {'failure_rates_df': pd.DataFrame(failure_rate_data),
|
| 44 |
+
'amd_tests_df': build_test_data('amd'),
|
| 45 |
+
'nvidia_tests_df': build_test_data('nvidia')}
|
|
|
|
|
|
|
| 46 |
|
| 47 |
def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> dict:
|
| 48 |
+
md = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 49 |
+
if md.empty:
|
| 50 |
+
empty = pd.DataFrame({'date': [], 'count': [], 'test_type': [], 'change': []})
|
| 51 |
+
return {'amd_df': empty.copy(), 'nvidia_df': empty.copy()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
dates = sorted(md['date'].unique())
|
| 54 |
+
|
| 55 |
+
def build_platform_data(platform):
|
| 56 |
+
data = []
|
| 57 |
+
for i, date in enumerate(dates):
|
| 58 |
+
dd = md[md['date'] == date]
|
| 59 |
+
if dd.empty:
|
| 60 |
+
continue
|
| 61 |
+
r = dd.iloc[0]
|
| 62 |
+
p = r.get(f'success_{platform}', 0)
|
| 63 |
+
f = r.get(f'failed_multi_no_{platform}', 0) + r.get(f'failed_single_no_{platform}', 0)
|
| 64 |
+
s = r.get(f'skipped_{platform}', 0)
|
| 65 |
+
|
| 66 |
+
pr = md[md['date'] == dates[i-1]].iloc[0] if i > 0 and not md[md['date'] == dates[i-1]].empty else None
|
| 67 |
+
pc = pr.get(f'success_{platform}', 0) if pr is not None else 0
|
| 68 |
+
fc = (pr.get(f'failed_multi_no_{platform}', 0) + pr.get(f'failed_single_no_{platform}', 0)) if pr is not None else 0
|
| 69 |
+
sc = pr.get(f'skipped_{platform}', 0) if pr is not None else 0
|
| 70 |
+
|
| 71 |
+
data.extend([
|
| 72 |
+
{'date': date, 'count': p, 'test_type': 'Passed', 'change': p - pc},
|
| 73 |
+
{'date': date, 'count': f, 'test_type': 'Failed', 'change': f - fc},
|
| 74 |
+
{'date': date, 'count': s, 'test_type': 'Skipped', 'change': s - sc}
|
| 75 |
+
])
|
| 76 |
+
return pd.DataFrame(data)
|
| 77 |
+
|
| 78 |
+
return {'amd_df': build_platform_data('amd'), 'nvidia_df': build_platform_data('nvidia')}
|
| 79 |
|
| 80 |
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
| 81 |
+
empty_fig = lambda title: go.Figure().update_layout(title=title, height=500,
|
| 82 |
+
font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
|
| 83 |
+
plot_bgcolor='#1a1a1a', margin=dict(b=130)) or go.Figure()
|
| 84 |
+
|
| 85 |
if historical_df.empty or 'date' not in historical_df.columns:
|
| 86 |
+
ef = empty_fig("No historical data available")
|
| 87 |
+
return {'failure_rates': ef, 'amd_tests': ef, 'nvidia_tests': ef}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
daily_stats = []
|
| 90 |
+
for date in sorted(historical_df['date'].unique()):
|
| 91 |
+
dd = historical_df[historical_df['date'] == date]
|
| 92 |
+
counts = {'date': date}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
for platform in ['amd', 'nvidia']:
|
| 95 |
+
tot_tests = tot_fails = p = f = s = 0
|
| 96 |
+
for _, row in dd.iterrows():
|
| 97 |
+
stats = extract_model_data(row)[0 if platform == 'amd' else 1]
|
| 98 |
+
tot = stats['passed'] + stats['failed'] + stats['error']
|
| 99 |
+
if tot > 0:
|
| 100 |
+
tot_tests += tot
|
| 101 |
+
tot_fails += stats['failed'] + stats['error']
|
| 102 |
+
p += stats['passed']
|
| 103 |
+
f += stats['failed'] + stats['error']
|
| 104 |
+
s += stats['skipped']
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
counts.update({f'{platform}_failure_rate': (tot_fails / tot_tests * 100) if tot_tests > 0 else 0,
|
| 107 |
+
f'{platform}_passed': p, f'{platform}_failed': f, f'{platform}_skipped': s})
|
| 108 |
+
daily_stats.append(counts)
|
| 109 |
+
|
| 110 |
+
fr_data = []
|
| 111 |
+
for i, s in enumerate(daily_stats):
|
| 112 |
+
for p in ['amd', 'nvidia']:
|
| 113 |
+
chg = s[f'{p}_failure_rate'] - daily_stats[i-1][f'{p}_failure_rate'] if i > 0 else 0
|
| 114 |
+
fr_data.append({'date': s['date'], 'failure_rate': s[f'{p}_failure_rate'],
|
| 115 |
+
'platform': p.upper(), 'change': chg})
|
| 116 |
+
|
| 117 |
+
def build_test_data(platform):
|
| 118 |
+
data = []
|
| 119 |
+
for i, s in enumerate(daily_stats):
|
| 120 |
+
for tt in ['passed', 'failed', 'skipped']:
|
| 121 |
+
chg = s[f'{platform}_{tt}'] - daily_stats[i-1][f'{platform}_{tt}'] if i > 0 else 0
|
| 122 |
+
data.append({'date': s['date'], 'count': s[f'{platform}_{tt}'],
|
| 123 |
+
'test_type': tt.capitalize(), 'change': chg})
|
| 124 |
+
return pd.DataFrame(data)
|
| 125 |
+
|
| 126 |
+
fr_df = pd.DataFrame(fr_data)
|
| 127 |
+
|
| 128 |
+
fig_fr = go.Figure()
|
| 129 |
+
for p, lc, mc in [('NVIDIA', '#76B900', '#FFFFFF'), ('AMD', '#ED1C24', '#404040')]:
|
| 130 |
+
d = fr_df[fr_df['platform'] == p]
|
| 131 |
+
if not d.empty:
|
| 132 |
+
fig_fr.add_trace(go.Scatter(x=d['date'], y=d['failure_rate'], mode='lines+markers',
|
| 133 |
+
name=p, line=dict(color=lc, width=3),
|
| 134 |
+
marker=dict(size=12, color=mc, line=dict(color=lc, width=2)),
|
| 135 |
+
hovertemplate=f'<b>{p}</b><br>Date: %{{x}}<br>Failure Rate: %{{y:.2f}}%<extra></extra>'))
|
| 136 |
+
|
| 137 |
+
fig_fr.update_layout(title="Overall Failure Rates Over Time", height=500,
|
| 138 |
+
font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000', plot_bgcolor='#1a1a1a',
|
| 139 |
+
title_font_size=20, legend=dict(font=dict(size=16), bgcolor='rgba(0,0,0,0.5)',
|
| 140 |
+
orientation="h", yanchor="bottom", y=-0.4, xanchor="center", x=0.5),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
xaxis=dict(title='Date', title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 142 |
yaxis=dict(title='Failure Rate (%)', title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 143 |
+
hovermode='x unified', margin=dict(b=130))
|
| 144 |
+
|
| 145 |
+
def create_line_fig(df, title):
|
| 146 |
+
fig = px.line(df, x='date', y='count', color='test_type',
|
| 147 |
+
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 148 |
+
title=title, labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'})
|
| 149 |
+
fig.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3))
|
| 150 |
+
fig.update_layout(height=500, font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
|
| 151 |
+
plot_bgcolor='#1a1a1a', title_font_size=20, legend=dict(font=dict(size=16),
|
| 152 |
+
bgcolor='rgba(0,0,0,0.5)', orientation="h", yanchor="bottom", y=-0.4, xanchor="center", x=0.5),
|
| 153 |
+
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 154 |
+
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 155 |
+
hovermode='x unified', margin=dict(b=130))
|
| 156 |
+
return fig
|
| 157 |
+
|
| 158 |
+
return {'failure_rates': fig_fr,
|
| 159 |
+
'amd_tests': create_line_fig(build_test_data('amd'), "AMD Test Results Over Time"),
|
| 160 |
+
'nvidia_tests': create_line_fig(build_test_data('nvidia'), "NVIDIA Test Results Over Time")}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict:
|
| 163 |
+
def empty_figs():
|
| 164 |
+
ef = lambda plat: go.Figure().update_layout(title=f"{model_name.upper()} - {plat} Results Over Time",
|
| 165 |
+
height=500, font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
|
| 166 |
+
plot_bgcolor='#1a1a1a', margin=dict(b=130)) or go.Figure()
|
| 167 |
+
return {'amd_plot': ef('AMD'), 'nvidia_plot': ef('NVIDIA')}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
if historical_df.empty or 'date' not in historical_df.columns:
|
| 170 |
+
return empty_figs()
|
| 171 |
+
|
| 172 |
+
md = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 173 |
+
if md.empty:
|
| 174 |
+
return empty_figs()
|
| 175 |
+
|
| 176 |
+
dates = sorted(md['date'].unique())
|
| 177 |
+
|
| 178 |
+
def build_data(platform):
|
| 179 |
+
data = []
|
| 180 |
+
for i, date in enumerate(dates):
|
| 181 |
+
dd = md[md['date'] == date]
|
| 182 |
+
if dd.empty:
|
| 183 |
+
continue
|
| 184 |
+
r = dd.iloc[0]
|
| 185 |
+
passed = r.get(f'success_{platform}', 0)
|
| 186 |
+
failed = r.get(f'failed_multi_no_{platform}', 0) + r.get(f'failed_single_no_{platform}', 0)
|
| 187 |
+
skipped = r.get(f'skipped_{platform}', 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
+
pc = fc = sc = 0
|
| 190 |
if i > 0:
|
| 191 |
+
prev_dd = md[md['date'] == dates[i-1]]
|
| 192 |
+
if not prev_dd.empty:
|
| 193 |
+
pr = prev_dd.iloc[0]
|
| 194 |
+
pc = pr.get(f'success_{platform}', 0)
|
| 195 |
+
fc = pr.get(f'failed_multi_no_{platform}', 0) + pr.get(f'failed_single_no_{platform}', 0)
|
| 196 |
+
sc = pr.get(f'skipped_{platform}', 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
+
data.extend([
|
| 199 |
+
{'date': date, 'count': passed, 'test_type': 'Passed', 'change': passed - pc},
|
| 200 |
+
{'date': date, 'count': failed, 'test_type': 'Failed', 'change': failed - fc},
|
| 201 |
+
{'date': date, 'count': skipped, 'test_type': 'Skipped', 'change': skipped - sc}
|
| 202 |
])
|
| 203 |
+
return pd.DataFrame(data)
|
| 204 |
+
|
| 205 |
+
def create_fig(df, platform):
|
| 206 |
+
fig = px.line(df, x='date', y='count', color='test_type',
|
| 207 |
+
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 208 |
+
title=f"{model_name.upper()} - {platform} Results Over Time",
|
| 209 |
+
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'})
|
| 210 |
+
fig.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3))
|
| 211 |
+
fig.update_layout(height=500, font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
|
| 212 |
+
plot_bgcolor='#1a1a1a', title_font_size=20, legend=dict(font=dict(size=16),
|
| 213 |
+
bgcolor='rgba(0,0,0,0.5)', orientation="h", yanchor="bottom", y=-0.4, xanchor="center", x=0.5),
|
| 214 |
+
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 215 |
+
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
|
| 216 |
+
hovermode='x unified', margin=dict(b=130))
|
| 217 |
+
return fig
|
| 218 |
+
|
| 219 |
+
return {'amd_plot': create_fig(build_data('amd'), 'AMD'),
|
| 220 |
+
'nvidia_plot': create_fig(build_data('nvidia'), 'NVIDIA')}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|