File size: 4,304 Bytes
f36fe6f
 
 
 
e71ab18
f36fe6f
 
 
 
 
 
 
 
 
 
 
 
 
e71ab18
f36fe6f
 
 
 
 
 
e71ab18
f36fe6f
 
 
e71ab18
f36fe6f
 
 
 
 
 
 
 
 
e71ab18
f36fe6f
 
 
e71ab18
f36fe6f
 
 
 
e71ab18
f36fe6f
 
 
e71ab18
f36fe6f
 
 
 
 
 
 
e71ab18
f36fe6f
e71ab18
f36fe6f
 
e71ab18
f36fe6f
 
 
 
 
 
 
 
e71ab18
 
 
 
 
9eb416b
 
 
e71ab18
 
9eb416b
f36fe6f
e71ab18
9eb416b
e71ab18
 
 
 
 
 
eae8d97
e71ab18
 
 
 
 
 
eae8d97
e71ab18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae8d97
e71ab18
 
 
 
 
9eb416b
 
e71ab18
 
9eb416b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import spaces
import torch
import numpy as np
from typing import Generator
from transformers import AutoModelForCausalLM, AutoTokenizer
from config import MODEL_NAME, MAX_NEW_TOKENS, TEMPERATURE, DO_SAMPLE

# Global variables to store the model and tokenizer
tokenizer = None
model = None

def initialize_model():
    """Initializes and loads the model and tokenizer once onto the GPU."""
    global tokenizer, model
    if model is None:
        try:
            print(f"Loading model {MODEL_NAME}...")
            
            # Use bfloat16 for efficiency on modern GPUs
            dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
            
            tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
            model = AutoModelForCausalLM.from_pretrained(
                MODEL_NAME,
                torch_dtype=dtype,
                device_map="auto"
            )
            model.eval()
            
            # Set padding token if not defined
            if tokenizer.pad_token_id is None:
                tokenizer.pad_token_id = tokenizer.eos_token_id
                
            print("Model loaded successfully.")
        except Exception as e:
            print(f"Failed to load model: {e}")
            raise
    return tokenizer, model

# Call initialization
try:
    initialize_model()
except Exception as e:
    print(f"Warning: Global model initialization failed: {e}")

@spaces.GPU(duration=120)
def stream_generate_response(prompt: str, history: list) -> Generator[str, None, None]:
    """
    Generates a response from the KAT model with proper streaming.
    """
    global tokenizer, model
    
    # Fallback initialization
    if model is None or tokenizer is None:
        initialize_model()

    # Convert Gradio history format to the model's chat template format
    messages = []
    for human, bot in history:
        if human:
            messages.append({"role": "user", "content": human})
        if bot:
            messages.append({"role": "assistant", "content": bot})

    # Add the current prompt
    messages.append({"role": "user", "content": prompt})

    # Apply chat template
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
    )
    
    # Tokenize with attention mask
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    input_ids = inputs.input_ids.to(model.device)
    attention_mask = inputs.attention_mask.to(model.device)
    
    # Store initial input length
    initial_length = input_ids.shape[-1]
    
    # Generate with streaming using yield-based approach
    accumulated_text = ""
    generated_tokens = 0
    
    # Generate tokens incrementally
    while generated_tokens < MAX_NEW_TOKENS:
        with torch.no_grad():
            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                return_dict=True
            )
            
        # Get next token probabilities
        next_token_logits = outputs.logits[:, -1, :]
        
        # Apply temperature
        if TEMPERATURE > 0:
            next_token_logits = next_token_logits / TEMPERATURE
            
        # Apply softmax and sample
        probs = torch.softmax(next_token_logits, dim=-1)
        if DO_SAMPLE:
            next_token = torch.multinomial(probs, num_samples=1)
        else:
            next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
        
        # Check for EOS token
        if next_token.item() == tokenizer.eos_token_id:
            break
            
        # Decode the new token
        new_token_text = tokenizer.decode(next_token[0], skip_special_tokens=True)
        
        # Update accumulated text
        accumulated_text += new_token_text
        
        # Yield the current accumulated text
        yield accumulated_text
        
        # Prepare for next iteration
        input_ids = torch.cat([input_ids, next_token], dim=-1)
        attention_mask = torch.cat([attention_mask, torch.ones_like(next_token)], dim=-1)
        
        # Increment generated tokens counter
        generated_tokens += 1

    # Final yield to ensure complete text
    if accumulated_text:
        yield accumulated_text.strip()