File size: 9,636 Bytes
de27e62
5215a67
de27e62
 
5215a67
 
de27e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5215a67
de27e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5215a67
 
 
 
 
de27e62
 
 
 
 
5215a67
 
 
de27e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5215a67
 
 
 
 
 
 
 
 
de27e62
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import torch
from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
from diffusers.utils import load_image
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
# from qwen_vl_utils import process_vision_info
from utils.vprocess import process_vision_info, resizeinput
import os
import re
from PIL import Image
import gradio as gr
import uuid
import argparse 

def parse_args():
    """Parses command-line arguments for model paths and server configuration."""
    parser = argparse.ArgumentParser(description="Launch DreamOmni2 Editing Gradio Demo.")
    parser.add_argument(
        "--vlm_path", 
        type=str, 
        default="vlm-model", 
        help="Path to the Qwen2_5_VL VLM model directory."
    )
    parser.add_argument(
        "--edit_lora_path", 
        type=str, 
        default="edit_lora", 
        help="Path to the FLUX.1-Kontext editing LoRA weights directory."
    )
    parser.add_argument(
        "--server_name", 
        type=str, 
        default="0.0.0.0", 
        help="The server name (IP address) to host the Gradio demo."
    )
    parser.add_argument(
        "--server_port", 
        type=int, 
        default=7860, 
        help="The port number to host the Gradio demo."
    )
    args = parser.parse_args()
    return args

ARGS = parse_args()
vlm_path = ARGS.vlm_path
edit_lora_path = ARGS.edit_lora_path
server_name = ARGS.server_name
server_port = ARGS.server_port
device = "cuda"

def extract_gen_content(text):
    text = text[6:-7]
    return text

print(f"Loading models from vlm_path: {vlm_path}, edit_lora_path: {edit_lora_path}")

pipe = DreamOmni2Pipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Kontext-dev",
    torch_dtype=torch.bfloat16
)
pipe.to(device)
pipe.load_lora_weights(edit_lora_path, adapter_name="edit")
pipe.set_adapters(["edit"], adapter_weights=[1])    

vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    vlm_path,
    torch_dtype="bfloat16",
    device_map="cuda"
)
processor = AutoProcessor.from_pretrained(vlm_path)


def infer_vlm(input_img_path, input_instruction, prefix):
    if not vlm_model or not processor:
        raise gr.Error("VLM Model not loaded. Cannot process prompt.")
    tp = []
    for path in input_img_path:
        tp.append({"type": "image", "image": path})
    tp.append({"type": "text", "text": input_instruction + prefix})
    messages = [{"role": "user", "content": tp}]

    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
    inputs = inputs.to("cuda")

    generated_ids = vlm_model.generate(**inputs, do_sample=False, max_new_tokens=4096)
    generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
    output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
    return output_text[0]

PREFERRED_KONTEXT_RESOLUTIONS = [
    (672, 1568),
    (688, 1504),
    (720, 1456),
    (752, 1392),
    (800, 1328),
    (832, 1248),
    (880, 1184),
    (944, 1104),
    (1024, 1024),
    (1104, 944),
    (1184, 880),
    (1248, 832),
    (1328, 800),
    (1392, 752),
    (1456, 720),
    (1504, 688),
    (1568, 672),
]
def find_closest_resolution(width, height, preferred_resolutions):
    input_ratio = width / height
    closest_resolution = min(
        preferred_resolutions,
        key=lambda res: abs((res[0] / res[1]) - input_ratio)
    )
    return closest_resolution

def perform_edit(input_img_paths, input_instruction, output_path):
    prefix = " It is editing task."
    source_imgs = []
    for path in input_img_paths:
        img = load_image(path)
        # source_imgs.append(img)
        source_imgs.append(resizeinput(img))
    prompt = infer_vlm(input_img_paths, input_instruction, prefix)
    prompt = extract_gen_content(prompt)
    print(f"Generated Prompt for VLM: {prompt}")

    image = pipe(
        images=source_imgs,
        height=source_imgs[0].height,
        width=source_imgs[0].width,
        prompt=prompt,
        num_inference_steps=30,
        guidance_scale=3.5,
    ).images[0]
    image.save(output_path)
    print(f"Edit result saved to {output_path}")


def process_request(image_file_1, image_file_2, instruction):
    # debugpy.listen(5678)
    # print("Waiting for debugger attach...")
    # debugpy.wait_for_client()
    if not image_file_1 or not image_file_2:
        raise gr.Error("Please upload both images.")
    if not instruction:
        raise gr.Error("Please provide an instruction.")
    if not pipe or not vlm_model:
        raise gr.Error("Models not loaded. Check the console for errors.")
    
    output_path = f"/tmp/{uuid.uuid4()}.png"
    input_img_paths = [image_file_1, image_file_2]  # List of file paths from the two gr.File inputs

    perform_edit(input_img_paths, instruction, output_path)
    return output_path


css = """
.text-center { text-align: center; }
.result-img img {
    max-height: 60vh !important; 
    min-height: 30vh !important;
    width: auto !important;      
    object-fit: contain;         
}
.input-img img {
    max-height: 30vh !important; 
    width: auto !important;      
    object-fit: contain;         
}
"""


with gr.Blocks(theme=gr.themes.Soft(), title="DreamOmni2", css=css) as demo:
    gr.HTML(
        """
        <h1 style="text-align:center; font-size:48px; font-weight:bold; margin-bottom:20px;">
            DreamOmni2: Omni-purpose Image Generation and Editing
        </h1>
        """
    )
    gr.Markdown(
        "Select a mode, upload two images, provide an instruction, and click 'Run'.",
        elem_classes="text-center"
    )
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("⬆️ Upload images. Click or drag to upload.")
            
            with gr.Row():
                image_uploader_1 = gr.Image(
                    label="Img 1",
                    type="filepath",
                    interactive=True,
                    elem_classes="input-img",
                )
                image_uploader_2 = gr.Image(
                    label="Img 2",
                    type="filepath",
                    interactive=True,
                    elem_classes="input-img",
                )
            
            instruction_text = gr.Textbox(
                label="Instruction",
                lines=2,
                placeholder="Input your instruction for generation or editing here...",
            )
            run_button = gr.Button("Run", variant="primary")

        with gr.Column(scale=2):
            gr.Markdown(
                "✏️ **Editing Mode**: Modify an existing image using instructions and references.\n\n"
                "Tip: If the result is not what you expect, try clicking **Run** again. "
            )
            output_image = gr.Image(
                label="Result",
                type="filepath",
                elem_classes="result-img",
            )

    # --- Examples (不变) ---
    gr.Markdown("## Examples")

    gr.Examples(
        label="Editing Examples",
        examples=[
            ["example_input/edit_tests/4/ref_0.jpg", "example_input/edit_tests/4/ref_1.jpg", "Replace the first image have the same image style as the second image.","example_input/edit_tests/4/res.jpg"],
            ["example_input/edit_tests/5/ref_0.jpg", "example_input/edit_tests/5/ref_1.jpg", "Make the person in the first image have the same hairstyle as the person in the second image.","example_input/edit_tests/5/res.jpg"],
            ["example_input/edit_tests/src.jpg", "example_input/edit_tests/ref.jpg", "Make the woman from the second image stand on the road in the first image.","example_input/edit_tests/edi_res.png"],
            ["example_input/edit_tests/1/ref_0.jpg", "example_input/edit_tests/1/ref_1.jpg", "Replace the lantern in the first image with the dog in the second image.","example_input/edit_tests/1/res.jpg"],
            ["example_input/edit_tests/2/ref_0.jpg", "example_input/edit_tests/2/ref_1.jpg", "Replace the suit in the first image with the clothes in the second image.","example_input/edit_tests/2/res.jpg"],
            ["example_input/edit_tests/3/ref_0.jpg", "example_input/edit_tests/3/ref_1.jpg", "Make the first image has the same light condition as the second image.","example_input/edit_tests/3/res.jpg"],
            ["example_input/edit_tests/6/ref_0.jpg", "example_input/edit_tests/6/ref_1.jpg", "Make the words in the first image have the same font as the words in the second image.","example_input/edit_tests/6/res.jpg"],
            ["example_input/edit_tests/7/ref_0.jpg", "example_input/edit_tests/7/ref_1.jpg", "Make the car in the first image have the same pattern as the mouse in the second image.","example_input/edit_tests/7/res.jpg"],
            ["example_input/edit_tests/8/ref_0.jpg", "example_input/edit_tests/8/ref_1.jpg", "Make the dress in the first image have the same pattern in the second image.","example_input/edit_tests/8/res.jpg"],
        ],
        inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image],
        cache_examples=False,
    )

    run_button.click(
        fn=process_request,
        inputs=[image_uploader_1, image_uploader_2, instruction_text],
        outputs=output_image
    )

if __name__ == "__main__":
    print("Launching Gradio Demo...")
    demo.launch(server_name=server_name, server_port=server_port)