Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import torch | |
| from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline | |
| from diffusers.utils import load_image | |
| from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
| # from qwen_vl_utils import process_vision_info | |
| from utils.vprocess import process_vision_info, resizeinput | |
| import os | |
| import re | |
| from PIL import Image | |
| import gradio as gr | |
| import uuid | |
| import argparse | |
| def parse_args(): | |
| """Parses command-line arguments for model paths and server configuration.""" | |
| parser = argparse.ArgumentParser(description="Launch DreamOmni2 Editing Gradio Demo.") | |
| parser.add_argument( | |
| "--vlm_path", | |
| type=str, | |
| default="vlm-model", | |
| help="Path to the Qwen2_5_VL VLM model directory." | |
| ) | |
| parser.add_argument( | |
| "--gen_lora_path", | |
| type=str, | |
| default="gen_lora", | |
| help="Path to the FLUX.1-Kontext generation LoRA weights directory." | |
| ) | |
| parser.add_argument( | |
| "--server_name", | |
| type=str, | |
| default="0.0.0.0", | |
| help="The server name (IP address) to host the Gradio demo." | |
| ) | |
| parser.add_argument( | |
| "--server_port", | |
| type=int, | |
| default=7860, | |
| help="The port number to host the Gradio demo." | |
| ) | |
| args = parser.parse_args() | |
| return args | |
| ARGS = parse_args() | |
| vlm_path = ARGS.vlm_path | |
| gen_lora_path = ARGS.gen_lora_path | |
| server_name = ARGS.server_name | |
| server_port = ARGS.server_port | |
| device = "cuda" | |
| def extract_gen_content(text): | |
| text = text[6:-7] | |
| return text | |
| print(f"Loading models from vlm_path: {vlm_path}, gen_lora_path: {gen_lora_path}") | |
| pipe = DreamOmni2Pipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-Kontext-dev", | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| pipe.to(device) | |
| pipe.load_lora_weights(gen_lora_path, adapter_name="generation") | |
| pipe.set_adapters(["generation"], adapter_weights=[1]) | |
| vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| vlm_path, | |
| torch_dtype="bfloat16", | |
| device_map="cuda" | |
| ) | |
| processor = AutoProcessor.from_pretrained(vlm_path) | |
| def infer_vlm(input_img_path, input_instruction, prefix): | |
| if not vlm_model or not processor: | |
| raise gr.Error("VLM Model not loaded. Cannot process prompt.") | |
| tp = [] | |
| for path in input_img_path: | |
| tp.append({"type": "image", "image": path}) | |
| tp.append({"type": "text", "text": input_instruction + prefix}) | |
| messages = [{"role": "user", "content": tp}] | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt") | |
| inputs = inputs.to("cuda") | |
| generated_ids = vlm_model.generate(**inputs, do_sample=False, max_new_tokens=4096) | |
| generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
| output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
| return output_text[0] | |
| PREFERRED_KONTEXT_RESOLUTIONS = [ | |
| (672, 1568), | |
| (688, 1504), | |
| (720, 1456), | |
| (752, 1392), | |
| (800, 1328), | |
| (832, 1248), | |
| (880, 1184), | |
| (944, 1104), | |
| (1024, 1024), | |
| (1104, 944), | |
| (1184, 880), | |
| (1248, 832), | |
| (1328, 800), | |
| (1392, 752), | |
| (1456, 720), | |
| (1504, 688), | |
| (1568, 672), | |
| ] | |
| def find_closest_resolution(width, height, preferred_resolutions): | |
| input_ratio = width / height | |
| closest_resolution = min( | |
| preferred_resolutions, | |
| key=lambda res: abs((res[0] / res[1]) - input_ratio) | |
| ) | |
| return closest_resolution | |
| def perform_generation(input_img_paths, input_instruction, output_path, height=1024, width=1024): | |
| prefix = " It is generation task." | |
| source_imgs = [] | |
| for path in input_img_paths: | |
| img = load_image(path) | |
| # source_imgs.append(img) | |
| source_imgs.append(resizeinput(img)) | |
| prompt = infer_vlm(input_img_paths, input_instruction, prefix) | |
| prompt = extract_gen_content(prompt) | |
| print(f"Generated Prompt for VLM: {prompt}") | |
| image = pipe( | |
| images=source_imgs, | |
| height=height, | |
| width=width, | |
| prompt=prompt, | |
| num_inference_steps=30, | |
| guidance_scale=3.5, | |
| ).images[0] | |
| image.save(output_path) | |
| print(f"Generation result saved to {output_path}") | |
| # --- Gradio Interface Logic --- | |
| def process_request(image_file_1, image_file_2, instruction): | |
| # debugpy.listen(5678) | |
| # print("Waiting for debugger attach...") | |
| # debugpy.wait_for_client() | |
| if not image_file_1 or not image_file_2: | |
| raise gr.Error("Please upload both images.") | |
| if not instruction: | |
| raise gr.Error("Please provide an instruction.") | |
| if not pipe or not vlm_model: | |
| raise gr.Error("Models not loaded. Check the console for errors.") | |
| output_path = f"/tmp/{uuid.uuid4()}.png" | |
| input_img_paths = [image_file_1, image_file_2] # List of file paths from the two gr.File inputs | |
| perform_generation(input_img_paths, instruction, output_path) | |
| return output_path | |
| css = """ | |
| .text-center { text-align: center; } | |
| .result-img img { | |
| max-height: 60vh !important; | |
| min-height: 30vh !important; | |
| width: auto !important; | |
| object-fit: contain; | |
| } | |
| .input-img img { | |
| max-height: 30vh !important; | |
| width: auto !important; | |
| object-fit: contain; | |
| } | |
| """ | |
| with gr.Blocks(theme=gr.themes.Soft(), title="DreamOmni2", css=css) as demo: | |
| gr.HTML( | |
| """ | |
| <h1 style="text-align:center; font-size:48px; font-weight:bold; margin-bottom:20px;"> | |
| DreamOmni2: Omni-purpose Image Generation and Editing | |
| </h1> | |
| """ | |
| ) | |
| gr.Markdown( | |
| "Select a mode, upload two images, provide an instruction, and click 'Run'.", | |
| elem_classes="text-center" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| gr.Markdown("⬆️ Upload images. Click or drag to upload.") | |
| with gr.Row(): | |
| image_uploader_1 = gr.Image( | |
| label="Img 1", | |
| type="filepath", | |
| interactive=True, | |
| elem_classes="input-img", | |
| ) | |
| image_uploader_2 = gr.Image( | |
| label="Img 2", | |
| type="filepath", | |
| interactive=True, | |
| elem_classes="input-img", | |
| ) | |
| instruction_text = gr.Textbox( | |
| label="Instruction", | |
| lines=2, | |
| placeholder="Input your instruction for generation or editing here...", | |
| ) | |
| run_button = gr.Button("Run", variant="primary") | |
| with gr.Column(scale=2): | |
| gr.Markdown("🖼️ **Generation Mode**: Create new scenes from reference images." | |
| "Tip: If the result is not what you expect, try clicking **Run** again. ") | |
| output_image = gr.Image( | |
| label="Result", | |
| type="filepath", | |
| elem_classes="result-img", | |
| ) | |
| # --- Examples --- | |
| gr.Markdown("## Examples") | |
| gr.Examples( | |
| label="Generation Examples", | |
| examples=[ | |
| [ | |
| "example_input/gen_tests/img1.jpg", | |
| "example_input/gen_tests/img2.jpg", | |
| "In the scene, the character from the first image stands on the left, and the character from the second image stands on the right. They are shaking hands against the backdrop of a spaceship interior.", | |
| "example_input/gen_tests/gen_res.png" | |
| ] | |
| ], | |
| inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image], | |
| cache_examples=False, | |
| ) | |
| run_button.click( | |
| fn=process_request, | |
| inputs=[image_uploader_1, image_uploader_2, instruction_text], | |
| outputs=output_image | |
| ) | |
| if __name__ == "__main__": | |
| print("Launching Gradio Demo...") | |
| demo.launch(server_name="0.0.0.0", server_port=7861, ) |