Spaces:
Running
on
Zero
Running
on
Zero
Linoy Tsaban
commited on
Commit
·
9113152
1
Parent(s):
1a2c8b5
Create tokenflow_utils.py
Browse files- tokenflow_utils.py +448 -0
tokenflow_utils.py
ADDED
|
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Type
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
from util import isinstance_str, batch_cosine_sim
|
| 6 |
+
|
| 7 |
+
def register_pivotal(diffusion_model, is_pivotal):
|
| 8 |
+
for _, module in diffusion_model.named_modules():
|
| 9 |
+
# If for some reason this has a different name, create an issue and I'll fix it
|
| 10 |
+
if isinstance_str(module, "BasicTransformerBlock"):
|
| 11 |
+
setattr(module, "pivotal_pass", is_pivotal)
|
| 12 |
+
|
| 13 |
+
def register_batch_idx(diffusion_model, batch_idx):
|
| 14 |
+
for _, module in diffusion_model.named_modules():
|
| 15 |
+
# If for some reason this has a different name, create an issue and I'll fix it
|
| 16 |
+
if isinstance_str(module, "BasicTransformerBlock"):
|
| 17 |
+
setattr(module, "batch_idx", batch_idx)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def register_time(model, t):
|
| 21 |
+
conv_module = model.unet.up_blocks[1].resnets[1]
|
| 22 |
+
setattr(conv_module, 't', t)
|
| 23 |
+
down_res_dict = {0: [0, 1], 1: [0, 1], 2: [0, 1]}
|
| 24 |
+
up_res_dict = {1: [0, 1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
|
| 25 |
+
for res in up_res_dict:
|
| 26 |
+
for block in up_res_dict[res]:
|
| 27 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
|
| 28 |
+
setattr(module, 't', t)
|
| 29 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn2
|
| 30 |
+
setattr(module, 't', t)
|
| 31 |
+
for res in down_res_dict:
|
| 32 |
+
for block in down_res_dict[res]:
|
| 33 |
+
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn1
|
| 34 |
+
setattr(module, 't', t)
|
| 35 |
+
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn2
|
| 36 |
+
setattr(module, 't', t)
|
| 37 |
+
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn1
|
| 38 |
+
setattr(module, 't', t)
|
| 39 |
+
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn2
|
| 40 |
+
setattr(module, 't', t)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def load_source_latents_t(t, latents_path):
|
| 44 |
+
latents_t_path = os.path.join(latents_path, f'noisy_latents_{t}.pt')
|
| 45 |
+
assert os.path.exists(latents_t_path), f'Missing latents at t {t} path {latents_t_path}'
|
| 46 |
+
latents = torch.load(latents_t_path)
|
| 47 |
+
return latents
|
| 48 |
+
|
| 49 |
+
def register_conv_injection(model, injection_schedule):
|
| 50 |
+
def conv_forward(self):
|
| 51 |
+
def forward(input_tensor, temb):
|
| 52 |
+
hidden_states = input_tensor
|
| 53 |
+
|
| 54 |
+
hidden_states = self.norm1(hidden_states)
|
| 55 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 56 |
+
|
| 57 |
+
if self.upsample is not None:
|
| 58 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
| 59 |
+
if hidden_states.shape[0] >= 64:
|
| 60 |
+
input_tensor = input_tensor.contiguous()
|
| 61 |
+
hidden_states = hidden_states.contiguous()
|
| 62 |
+
input_tensor = self.upsample(input_tensor)
|
| 63 |
+
hidden_states = self.upsample(hidden_states)
|
| 64 |
+
elif self.downsample is not None:
|
| 65 |
+
input_tensor = self.downsample(input_tensor)
|
| 66 |
+
hidden_states = self.downsample(hidden_states)
|
| 67 |
+
|
| 68 |
+
hidden_states = self.conv1(hidden_states)
|
| 69 |
+
|
| 70 |
+
if temb is not None:
|
| 71 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
|
| 72 |
+
|
| 73 |
+
if temb is not None and self.time_embedding_norm == "default":
|
| 74 |
+
hidden_states = hidden_states + temb
|
| 75 |
+
|
| 76 |
+
hidden_states = self.norm2(hidden_states)
|
| 77 |
+
|
| 78 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
| 79 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
| 80 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 81 |
+
|
| 82 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 83 |
+
|
| 84 |
+
hidden_states = self.dropout(hidden_states)
|
| 85 |
+
hidden_states = self.conv2(hidden_states)
|
| 86 |
+
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
|
| 87 |
+
source_batch_size = int(hidden_states.shape[0] // 3)
|
| 88 |
+
# inject unconditional
|
| 89 |
+
hidden_states[source_batch_size:2 * source_batch_size] = hidden_states[:source_batch_size]
|
| 90 |
+
# inject conditional
|
| 91 |
+
hidden_states[2 * source_batch_size:] = hidden_states[:source_batch_size]
|
| 92 |
+
|
| 93 |
+
if self.conv_shortcut is not None:
|
| 94 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
| 95 |
+
|
| 96 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
| 97 |
+
|
| 98 |
+
return output_tensor
|
| 99 |
+
|
| 100 |
+
return forward
|
| 101 |
+
|
| 102 |
+
conv_module = model.unet.up_blocks[1].resnets[1]
|
| 103 |
+
conv_module.forward = conv_forward(conv_module)
|
| 104 |
+
setattr(conv_module, 'injection_schedule', injection_schedule)
|
| 105 |
+
|
| 106 |
+
def register_extended_attention_pnp(model, injection_schedule):
|
| 107 |
+
def sa_forward(self):
|
| 108 |
+
to_out = self.to_out
|
| 109 |
+
if type(to_out) is torch.nn.modules.container.ModuleList:
|
| 110 |
+
to_out = self.to_out[0]
|
| 111 |
+
else:
|
| 112 |
+
to_out = self.to_out
|
| 113 |
+
|
| 114 |
+
def forward(x, encoder_hidden_states=None):
|
| 115 |
+
batch_size, sequence_length, dim = x.shape
|
| 116 |
+
h = self.heads
|
| 117 |
+
n_frames = batch_size // 3
|
| 118 |
+
is_cross = encoder_hidden_states is not None
|
| 119 |
+
encoder_hidden_states = encoder_hidden_states if is_cross else x
|
| 120 |
+
q = self.to_q(x)
|
| 121 |
+
k = self.to_k(encoder_hidden_states)
|
| 122 |
+
v = self.to_v(encoder_hidden_states)
|
| 123 |
+
|
| 124 |
+
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
|
| 125 |
+
# inject unconditional
|
| 126 |
+
q[n_frames:2 * n_frames] = q[:n_frames]
|
| 127 |
+
k[n_frames:2 * n_frames] = k[:n_frames]
|
| 128 |
+
# inject conditional
|
| 129 |
+
q[2 * n_frames:] = q[:n_frames]
|
| 130 |
+
k[2 * n_frames:] = k[:n_frames]
|
| 131 |
+
|
| 132 |
+
k_source = k[:n_frames]
|
| 133 |
+
k_uncond = k[n_frames:2 * n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
| 134 |
+
k_cond = k[2 * n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
| 135 |
+
|
| 136 |
+
v_source = v[:n_frames]
|
| 137 |
+
v_uncond = v[n_frames:2 * n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
| 138 |
+
v_cond = v[2 * n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
| 139 |
+
|
| 140 |
+
q_source = self.head_to_batch_dim(q[:n_frames])
|
| 141 |
+
q_uncond = self.head_to_batch_dim(q[n_frames:2 * n_frames])
|
| 142 |
+
q_cond = self.head_to_batch_dim(q[2 * n_frames:])
|
| 143 |
+
k_source = self.head_to_batch_dim(k_source)
|
| 144 |
+
k_uncond = self.head_to_batch_dim(k_uncond)
|
| 145 |
+
k_cond = self.head_to_batch_dim(k_cond)
|
| 146 |
+
v_source = self.head_to_batch_dim(v_source)
|
| 147 |
+
v_uncond = self.head_to_batch_dim(v_uncond)
|
| 148 |
+
v_cond = self.head_to_batch_dim(v_cond)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
q_src = q_source.view(n_frames, h, sequence_length, dim // h)
|
| 152 |
+
k_src = k_source.view(n_frames, h, sequence_length, dim // h)
|
| 153 |
+
v_src = v_source.view(n_frames, h, sequence_length, dim // h)
|
| 154 |
+
q_uncond = q_uncond.view(n_frames, h, sequence_length, dim // h)
|
| 155 |
+
k_uncond = k_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
| 156 |
+
v_uncond = v_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
| 157 |
+
q_cond = q_cond.view(n_frames, h, sequence_length, dim // h)
|
| 158 |
+
k_cond = k_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
| 159 |
+
v_cond = v_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
| 160 |
+
|
| 161 |
+
out_source_all = []
|
| 162 |
+
out_uncond_all = []
|
| 163 |
+
out_cond_all = []
|
| 164 |
+
|
| 165 |
+
single_batch = n_frames<=12
|
| 166 |
+
b = n_frames if single_batch else 1
|
| 167 |
+
|
| 168 |
+
for frame in range(0, n_frames, b):
|
| 169 |
+
out_source = []
|
| 170 |
+
out_uncond = []
|
| 171 |
+
out_cond = []
|
| 172 |
+
for j in range(h):
|
| 173 |
+
sim_source_b = torch.bmm(q_src[frame: frame+ b, j], k_src[frame: frame+ b, j].transpose(-1, -2)) * self.scale
|
| 174 |
+
sim_uncond_b = torch.bmm(q_uncond[frame: frame+ b, j], k_uncond[frame: frame+ b, j].transpose(-1, -2)) * self.scale
|
| 175 |
+
sim_cond = torch.bmm(q_cond[frame: frame+ b, j], k_cond[frame: frame+ b, j].transpose(-1, -2)) * self.scale
|
| 176 |
+
|
| 177 |
+
out_source.append(torch.bmm(sim_source_b.softmax(dim=-1), v_src[frame: frame+ b, j]))
|
| 178 |
+
out_uncond.append(torch.bmm(sim_uncond_b.softmax(dim=-1), v_uncond[frame: frame+ b, j]))
|
| 179 |
+
out_cond.append(torch.bmm(sim_cond.softmax(dim=-1), v_cond[frame: frame+ b, j]))
|
| 180 |
+
|
| 181 |
+
out_source = torch.cat(out_source, dim=0)
|
| 182 |
+
out_uncond = torch.cat(out_uncond, dim=0)
|
| 183 |
+
out_cond = torch.cat(out_cond, dim=0)
|
| 184 |
+
if single_batch:
|
| 185 |
+
out_source = out_source.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
|
| 186 |
+
out_uncond = out_uncond.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
|
| 187 |
+
out_cond = out_cond.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
|
| 188 |
+
out_source_all.append(out_source)
|
| 189 |
+
out_uncond_all.append(out_uncond)
|
| 190 |
+
out_cond_all.append(out_cond)
|
| 191 |
+
|
| 192 |
+
out_source = torch.cat(out_source_all, dim=0)
|
| 193 |
+
out_uncond = torch.cat(out_uncond_all, dim=0)
|
| 194 |
+
out_cond = torch.cat(out_cond_all, dim=0)
|
| 195 |
+
|
| 196 |
+
out = torch.cat([out_source, out_uncond, out_cond], dim=0)
|
| 197 |
+
out = self.batch_to_head_dim(out)
|
| 198 |
+
|
| 199 |
+
return to_out(out)
|
| 200 |
+
|
| 201 |
+
return forward
|
| 202 |
+
|
| 203 |
+
for _, module in model.unet.named_modules():
|
| 204 |
+
if isinstance_str(module, "BasicTransformerBlock"):
|
| 205 |
+
module.attn1.forward = sa_forward(module.attn1)
|
| 206 |
+
setattr(module.attn1, 'injection_schedule', [])
|
| 207 |
+
|
| 208 |
+
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
|
| 209 |
+
# we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution
|
| 210 |
+
for res in res_dict:
|
| 211 |
+
for block in res_dict[res]:
|
| 212 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
|
| 213 |
+
module.forward = sa_forward(module)
|
| 214 |
+
setattr(module, 'injection_schedule', injection_schedule)
|
| 215 |
+
|
| 216 |
+
def register_extended_attention(model):
|
| 217 |
+
def sa_forward(self):
|
| 218 |
+
to_out = self.to_out
|
| 219 |
+
if type(to_out) is torch.nn.modules.container.ModuleList:
|
| 220 |
+
to_out = self.to_out[0]
|
| 221 |
+
else:
|
| 222 |
+
to_out = self.to_out
|
| 223 |
+
|
| 224 |
+
def forward(x, encoder_hidden_states=None):
|
| 225 |
+
batch_size, sequence_length, dim = x.shape
|
| 226 |
+
h = self.heads
|
| 227 |
+
n_frames = batch_size // 3
|
| 228 |
+
is_cross = encoder_hidden_states is not None
|
| 229 |
+
encoder_hidden_states = encoder_hidden_states if is_cross else x
|
| 230 |
+
q = self.to_q(x)
|
| 231 |
+
k = self.to_k(encoder_hidden_states)
|
| 232 |
+
v = self.to_v(encoder_hidden_states)
|
| 233 |
+
|
| 234 |
+
k_source = k[:n_frames]
|
| 235 |
+
k_uncond = k[n_frames: 2*n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
| 236 |
+
k_cond = k[2*n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
| 237 |
+
v_source = v[:n_frames]
|
| 238 |
+
v_uncond = v[n_frames:2*n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
| 239 |
+
v_cond = v[2*n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1)
|
| 240 |
+
|
| 241 |
+
q_source = self.head_to_batch_dim(q[:n_frames])
|
| 242 |
+
q_uncond = self.head_to_batch_dim(q[n_frames: 2*n_frames])
|
| 243 |
+
q_cond = self.head_to_batch_dim(q[2 * n_frames:])
|
| 244 |
+
k_source = self.head_to_batch_dim(k_source)
|
| 245 |
+
k_uncond = self.head_to_batch_dim(k_uncond)
|
| 246 |
+
k_cond = self.head_to_batch_dim(k_cond)
|
| 247 |
+
v_source = self.head_to_batch_dim(v_source)
|
| 248 |
+
v_uncond = self.head_to_batch_dim(v_uncond)
|
| 249 |
+
v_cond = self.head_to_batch_dim(v_cond)
|
| 250 |
+
|
| 251 |
+
out_source = []
|
| 252 |
+
out_uncond = []
|
| 253 |
+
out_cond = []
|
| 254 |
+
|
| 255 |
+
q_src = q_source.view(n_frames, h, sequence_length, dim // h)
|
| 256 |
+
k_src = k_source.view(n_frames, h, sequence_length, dim // h)
|
| 257 |
+
v_src = v_source.view(n_frames, h, sequence_length, dim // h)
|
| 258 |
+
q_uncond = q_uncond.view(n_frames, h, sequence_length, dim // h)
|
| 259 |
+
k_uncond = k_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
| 260 |
+
v_uncond = v_uncond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
| 261 |
+
q_cond = q_cond.view(n_frames, h, sequence_length, dim // h)
|
| 262 |
+
k_cond = k_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
| 263 |
+
v_cond = v_cond.view(n_frames, h, sequence_length * n_frames, dim // h)
|
| 264 |
+
|
| 265 |
+
for j in range(h):
|
| 266 |
+
sim_source_b = torch.bmm(q_src[:, j], k_src[:, j].transpose(-1, -2)) * self.scale
|
| 267 |
+
sim_uncond_b = torch.bmm(q_uncond[:, j], k_uncond[:, j].transpose(-1, -2)) * self.scale
|
| 268 |
+
sim_cond = torch.bmm(q_cond[:, j], k_cond[:, j].transpose(-1, -2)) * self.scale
|
| 269 |
+
|
| 270 |
+
out_source.append(torch.bmm(sim_source_b.softmax(dim=-1), v_src[:, j]))
|
| 271 |
+
out_uncond.append(torch.bmm(sim_uncond_b.softmax(dim=-1), v_uncond[:, j]))
|
| 272 |
+
out_cond.append(torch.bmm(sim_cond.softmax(dim=-1), v_cond[:, j]))
|
| 273 |
+
|
| 274 |
+
out_source = torch.cat(out_source, dim=0).view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
|
| 275 |
+
out_uncond = torch.cat(out_uncond, dim=0).view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
|
| 276 |
+
out_cond = torch.cat(out_cond, dim=0).view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1)
|
| 277 |
+
|
| 278 |
+
out = torch.cat([out_source, out_uncond, out_cond], dim=0)
|
| 279 |
+
out = self.batch_to_head_dim(out)
|
| 280 |
+
|
| 281 |
+
return to_out(out)
|
| 282 |
+
|
| 283 |
+
return forward
|
| 284 |
+
|
| 285 |
+
for _, module in model.unet.named_modules():
|
| 286 |
+
if isinstance_str(module, "BasicTransformerBlock"):
|
| 287 |
+
module.attn1.forward = sa_forward(module.attn1)
|
| 288 |
+
|
| 289 |
+
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
|
| 290 |
+
# we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution
|
| 291 |
+
for res in res_dict:
|
| 292 |
+
for block in res_dict[res]:
|
| 293 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
|
| 294 |
+
module.forward = sa_forward(module)
|
| 295 |
+
|
| 296 |
+
def make_tokenflow_attention_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]:
|
| 297 |
+
|
| 298 |
+
class TokenFlowBlock(block_class):
|
| 299 |
+
|
| 300 |
+
def forward(
|
| 301 |
+
self,
|
| 302 |
+
hidden_states,
|
| 303 |
+
attention_mask=None,
|
| 304 |
+
encoder_hidden_states=None,
|
| 305 |
+
encoder_attention_mask=None,
|
| 306 |
+
timestep=None,
|
| 307 |
+
cross_attention_kwargs=None,
|
| 308 |
+
class_labels=None,
|
| 309 |
+
) -> torch.Tensor:
|
| 310 |
+
|
| 311 |
+
batch_size, sequence_length, dim = hidden_states.shape
|
| 312 |
+
n_frames = batch_size // 3
|
| 313 |
+
mid_idx = n_frames // 2
|
| 314 |
+
hidden_states = hidden_states.view(3, n_frames, sequence_length, dim)
|
| 315 |
+
|
| 316 |
+
if self.use_ada_layer_norm:
|
| 317 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
| 318 |
+
elif self.use_ada_layer_norm_zero:
|
| 319 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
| 320 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
| 321 |
+
)
|
| 322 |
+
else:
|
| 323 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 324 |
+
|
| 325 |
+
norm_hidden_states = norm_hidden_states.view(3, n_frames, sequence_length, dim)
|
| 326 |
+
if self.pivotal_pass:
|
| 327 |
+
self.pivot_hidden_states = norm_hidden_states
|
| 328 |
+
else:
|
| 329 |
+
idx1 = []
|
| 330 |
+
idx2 = []
|
| 331 |
+
batch_idxs = [self.batch_idx]
|
| 332 |
+
if self.batch_idx > 0:
|
| 333 |
+
batch_idxs.append(self.batch_idx - 1)
|
| 334 |
+
|
| 335 |
+
sim = batch_cosine_sim(norm_hidden_states[0].reshape(-1, dim),
|
| 336 |
+
self.pivot_hidden_states[0][batch_idxs].reshape(-1, dim))
|
| 337 |
+
if len(batch_idxs) == 2:
|
| 338 |
+
sim1, sim2 = sim.chunk(2, dim=1)
|
| 339 |
+
# sim: n_frames * seq_len, len(batch_idxs) * seq_len
|
| 340 |
+
idx1.append(sim1.argmax(dim=-1)) # n_frames * seq_len
|
| 341 |
+
idx2.append(sim2.argmax(dim=-1)) # n_frames * seq_len
|
| 342 |
+
else:
|
| 343 |
+
idx1.append(sim.argmax(dim=-1))
|
| 344 |
+
idx1 = torch.stack(idx1 * 3, dim=0) # 3, n_frames * seq_len
|
| 345 |
+
idx1 = idx1.squeeze(1)
|
| 346 |
+
if len(batch_idxs) == 2:
|
| 347 |
+
idx2 = torch.stack(idx2 * 3, dim=0) # 3, n_frames * seq_len
|
| 348 |
+
idx2 = idx2.squeeze(1)
|
| 349 |
+
|
| 350 |
+
# 1. Self-Attention
|
| 351 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
| 352 |
+
if self.pivotal_pass:
|
| 353 |
+
# norm_hidden_states.shape = 3, n_frames * seq_len, dim
|
| 354 |
+
self.attn_output = self.attn1(
|
| 355 |
+
norm_hidden_states.view(batch_size, sequence_length, dim),
|
| 356 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
| 357 |
+
**cross_attention_kwargs,
|
| 358 |
+
)
|
| 359 |
+
# 3, n_frames * seq_len, dim - > 3 * n_frames, seq_len, dim
|
| 360 |
+
self.kf_attn_output = self.attn_output
|
| 361 |
+
else:
|
| 362 |
+
batch_kf_size, _, _ = self.kf_attn_output.shape
|
| 363 |
+
self.attn_output = self.kf_attn_output.view(3, batch_kf_size // 3, sequence_length, dim)[:,
|
| 364 |
+
batch_idxs] # 3, n_frames, seq_len, dim --> 3, len(batch_idxs), seq_len, dim
|
| 365 |
+
if self.use_ada_layer_norm_zero:
|
| 366 |
+
self.attn_output = gate_msa.unsqueeze(1) * self.attn_output
|
| 367 |
+
|
| 368 |
+
# gather values from attn_output, using idx as indices, and get a tensor of shape 3, n_frames, seq_len, dim
|
| 369 |
+
if not self.pivotal_pass:
|
| 370 |
+
if len(batch_idxs) == 2:
|
| 371 |
+
attn_1, attn_2 = self.attn_output[:, 0], self.attn_output[:, 1]
|
| 372 |
+
attn_output1 = attn_1.gather(dim=1, index=idx1.unsqueeze(-1).repeat(1, 1, dim))
|
| 373 |
+
attn_output2 = attn_2.gather(dim=1, index=idx2.unsqueeze(-1).repeat(1, 1, dim))
|
| 374 |
+
|
| 375 |
+
s = torch.arange(0, n_frames).to(idx1.device) + batch_idxs[0] * n_frames
|
| 376 |
+
# distance from the pivot
|
| 377 |
+
p1 = batch_idxs[0] * n_frames + n_frames // 2
|
| 378 |
+
p2 = batch_idxs[1] * n_frames + n_frames // 2
|
| 379 |
+
d1 = torch.abs(s - p1)
|
| 380 |
+
d2 = torch.abs(s - p2)
|
| 381 |
+
# weight
|
| 382 |
+
w1 = d2 / (d1 + d2)
|
| 383 |
+
w1 = torch.sigmoid(w1)
|
| 384 |
+
|
| 385 |
+
w1 = w1.unsqueeze(0).unsqueeze(-1).unsqueeze(-1).repeat(3, 1, sequence_length, dim)
|
| 386 |
+
attn_output1 = attn_output1.view(3, n_frames, sequence_length, dim)
|
| 387 |
+
attn_output2 = attn_output2.view(3, n_frames, sequence_length, dim)
|
| 388 |
+
attn_output = w1 * attn_output1 + (1 - w1) * attn_output2
|
| 389 |
+
else:
|
| 390 |
+
attn_output = self.attn_output[:,0].gather(dim=1, index=idx1.unsqueeze(-1).repeat(1, 1, dim))
|
| 391 |
+
|
| 392 |
+
attn_output = attn_output.reshape(
|
| 393 |
+
batch_size, sequence_length, dim) # 3 * n_frames, seq_len, dim
|
| 394 |
+
else:
|
| 395 |
+
attn_output = self.attn_output
|
| 396 |
+
hidden_states = hidden_states.reshape(batch_size, sequence_length, dim) # 3 * n_frames, seq_len, dim
|
| 397 |
+
hidden_states = attn_output + hidden_states
|
| 398 |
+
|
| 399 |
+
if self.attn2 is not None:
|
| 400 |
+
norm_hidden_states = (
|
| 401 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
# 2. Cross-Attention
|
| 405 |
+
attn_output = self.attn2(
|
| 406 |
+
norm_hidden_states,
|
| 407 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 408 |
+
attention_mask=encoder_attention_mask,
|
| 409 |
+
**cross_attention_kwargs,
|
| 410 |
+
)
|
| 411 |
+
hidden_states = attn_output + hidden_states
|
| 412 |
+
|
| 413 |
+
# 3. Feed-forward
|
| 414 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 415 |
+
|
| 416 |
+
if self.use_ada_layer_norm_zero:
|
| 417 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
ff_output = self.ff(norm_hidden_states)
|
| 421 |
+
|
| 422 |
+
if self.use_ada_layer_norm_zero:
|
| 423 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 424 |
+
|
| 425 |
+
hidden_states = ff_output + hidden_states
|
| 426 |
+
|
| 427 |
+
return hidden_states
|
| 428 |
+
|
| 429 |
+
return TokenFlowBlock
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
def set_tokenflow(
|
| 433 |
+
model: torch.nn.Module):
|
| 434 |
+
"""
|
| 435 |
+
Sets the tokenflow attention blocks in a model.
|
| 436 |
+
"""
|
| 437 |
+
|
| 438 |
+
for _, module in model.named_modules():
|
| 439 |
+
if isinstance_str(module, "BasicTransformerBlock"):
|
| 440 |
+
make_tokenflow_block_fn = make_tokenflow_attention_block
|
| 441 |
+
module.__class__ = make_tokenflow_block_fn(module.__class__)
|
| 442 |
+
|
| 443 |
+
# Something needed for older versions of diffusers
|
| 444 |
+
if not hasattr(module, "use_ada_layer_norm_zero"):
|
| 445 |
+
module.use_ada_layer_norm = False
|
| 446 |
+
module.use_ada_layer_norm_zero = False
|
| 447 |
+
|
| 448 |
+
return model
|