Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Sequence | |
| import random | |
| from typing import Any | |
| from tqdm import tqdm | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import diffusers.schedulers as noise_schedulers | |
| from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
| from diffusers.utils.torch_utils import randn_tensor | |
| import numpy as np | |
| from models.autoencoder.autoencoder_base import AutoEncoderBase | |
| from models.content_encoder.caption_encoder import ContentEncoder | |
| from models.common import LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase | |
| from utils.torch_utilities import ( | |
| create_alignment_path, create_mask_from_length, loss_with_mask, | |
| trim_or_pad_length | |
| ) | |
| class DiffusionMixin: | |
| def __init__( | |
| self, | |
| noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1", | |
| snr_gamma: float = None, | |
| classifier_free_guidance: bool = True, | |
| cfg_drop_ratio: float = 0.2, | |
| ) -> None: | |
| self.noise_scheduler_name = noise_scheduler_name | |
| self.snr_gamma = snr_gamma | |
| self.classifier_free_guidance = classifier_free_guidance | |
| self.cfg_drop_ratio = cfg_drop_ratio | |
| self.noise_scheduler = noise_schedulers.DDIMScheduler.from_pretrained( | |
| self.noise_scheduler_name, subfolder="scheduler" | |
| ) | |
| def compute_snr(self, timesteps) -> torch.Tensor: | |
| """ | |
| Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 | |
| """ | |
| alphas_cumprod = self.noise_scheduler.alphas_cumprod | |
| sqrt_alphas_cumprod = alphas_cumprod**0.5 | |
| sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod)**0.5 | |
| # Expand the tensors. | |
| # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 | |
| sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device | |
| )[timesteps].float() | |
| while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): | |
| sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] | |
| alpha = sqrt_alphas_cumprod.expand(timesteps.shape) | |
| sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to( | |
| device=timesteps.device | |
| )[timesteps].float() | |
| while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): | |
| sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., | |
| None] | |
| sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) | |
| # Compute SNR. | |
| snr = (alpha / sigma)**2 | |
| return snr | |
| def get_timesteps( | |
| self, | |
| batch_size: int, | |
| device: torch.device, | |
| training: bool = True | |
| ) -> torch.Tensor: | |
| if training: | |
| timesteps = torch.randint( | |
| 0, | |
| self.noise_scheduler.config.num_train_timesteps, | |
| (batch_size, ), | |
| device=device | |
| ) | |
| else: | |
| # validation on half of the total timesteps | |
| timesteps = (self.noise_scheduler.config.num_train_timesteps // | |
| 2) * torch.ones((batch_size, ), | |
| dtype=torch.int64, | |
| device=device) | |
| timesteps = timesteps.long() | |
| return timesteps | |
| def get_target( | |
| self, latent: torch.Tensor, noise: torch.Tensor, | |
| timesteps: torch.Tensor | |
| ) -> torch.Tensor: | |
| """ | |
| Get the target for loss depending on the prediction type | |
| """ | |
| if self.noise_scheduler.config.prediction_type == "epsilon": | |
| target = noise | |
| elif self.noise_scheduler.config.prediction_type == "v_prediction": | |
| target = self.noise_scheduler.get_velocity( | |
| latent, noise, timesteps | |
| ) | |
| else: | |
| raise ValueError( | |
| f"Unknown prediction type {self.noise_scheduler.config.prediction_type}" | |
| ) | |
| return target | |
| def loss_with_snr( | |
| self, pred: torch.Tensor, target: torch.Tensor, | |
| timesteps: torch.Tensor, mask: torch.Tensor | |
| ) -> torch.Tensor: | |
| if self.snr_gamma is None: | |
| loss = F.mse_loss(pred.float(), target.float(), reduction="none") | |
| loss = loss_with_mask(loss, mask) | |
| else: | |
| # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. | |
| # Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py | |
| snr = self.compute_snr(timesteps) | |
| mse_loss_weights = ( | |
| torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], | |
| dim=1).min(dim=1)[0] / snr | |
| ) | |
| loss = F.mse_loss(pred.float(), target.float(), reduction="none") | |
| loss = loss_with_mask(loss, mask, reduce=False) * mse_loss_weights | |
| loss = loss.mean() | |
| return loss | |
| class AudioDiffusion( | |
| LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase, | |
| DiffusionMixin | |
| ): | |
| """ | |
| Args: | |
| autoencoder (AutoEncoderBase): Pretrained autoencoder module VAE(frozen). | |
| content_encoder (ContentEncoder): Encodes TCC and TDC information. | |
| backbone (nn.Module): Main denoising network. | |
| frame_resolution (float): Resolution for audio frames. | |
| noise_scheduler_name (str): Noise scheduler identifier. | |
| snr_gamma (float, optional): SNR gamma for noise scheduler. | |
| classifier_free_guidance (bool): Enable classifier-free guidance. | |
| cfg_drop_ratio (float): Ratio for randomly dropping context for classifier-free guidance. | |
| """ | |
| def __init__( | |
| self, | |
| autoencoder: AutoEncoderBase, | |
| content_encoder: ContentEncoder, | |
| backbone: nn.Module, | |
| frame_resolution:float, | |
| noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1", | |
| snr_gamma: float = None, | |
| classifier_free_guidance: bool = True, | |
| cfg_drop_ratio: float = 0.2, | |
| ): | |
| nn.Module.__init__(self) | |
| DiffusionMixin.__init__( | |
| self, noise_scheduler_name, snr_gamma, classifier_free_guidance, cfg_drop_ratio | |
| ) | |
| self.autoencoder = autoencoder | |
| # Freeze autoencoder parameters | |
| for param in self.autoencoder.parameters(): | |
| param.requires_grad = False | |
| self.content_encoder = content_encoder | |
| self.backbone = backbone | |
| self.frame_resolution = frame_resolution | |
| self.dummy_param = nn.Parameter(torch.empty(0)) | |
| def forward( | |
| self, content: list[Any], condition: list[Any], task: list[str], | |
| waveform: torch.Tensor, waveform_lengths: torch.Tensor, **kwargs | |
| ): | |
| """ | |
| Training forward pass. | |
| Args: | |
| content (list[Any]): List of content dicts for each sample. | |
| condition (list[Any]): Conditioning information (unused here). | |
| task (list[str]): List of task types. | |
| waveform (Tensor): Batch of waveform tensors. | |
| waveform_lengths (Tensor): Lengths for each waveform sample. | |
| Returns: | |
| dict: Dictionary containing the diffusion loss. | |
| """ | |
| device = self.dummy_param.device | |
| num_train_timesteps = self.noise_scheduler.config.num_train_timesteps | |
| self.noise_scheduler.set_timesteps(num_train_timesteps, device=device) | |
| self.autoencoder.eval() | |
| with torch.no_grad(): | |
| latent, latent_mask = self.autoencoder.encode( | |
| waveform.unsqueeze(1), waveform_lengths | |
| ) | |
| # content(non_time_aligned_content) for TCC and time_aligned_content for TDC | |
| content, content_mask, onset, _= self.content_encoder.encode_content( | |
| content, device=device | |
| ) | |
| # prepare latent and diffusion-related noise | |
| time_aligned_content = onset.permute(0,2,1) | |
| if self.training and self.classifier_free_guidance: | |
| mask_indices = [ | |
| k for k in range(len(waveform)) if random.random() < self.cfg_drop_ratio | |
| ] | |
| if len(mask_indices) > 0: | |
| content[mask_indices] = 0 | |
| time_aligned_content[mask_indices] = 0 | |
| batch_size = latent.shape[0] | |
| timesteps = self.get_timesteps(batch_size, device, self.training) | |
| noise = torch.randn_like(latent) | |
| noisy_latent = self.noise_scheduler.add_noise(latent, noise, timesteps) | |
| target = self.get_target(latent, noise, timesteps) | |
| # Denoising prediction | |
| pred: torch.Tensor = self.backbone( | |
| x=noisy_latent, | |
| timesteps=timesteps, | |
| time_aligned_context=time_aligned_content, | |
| context=content, | |
| x_mask=latent_mask, | |
| context_mask=content_mask | |
| ) | |
| pred = pred.transpose(1, self.autoencoder.time_dim) | |
| target = target.transpose(1, self.autoencoder.time_dim) | |
| diff_loss = self.loss_with_snr(pred, target, timesteps, latent_mask) | |
| return { | |
| "diff_loss": diff_loss, | |
| } | |
| def inference( | |
| self, | |
| content: list[Any], | |
| num_steps: int = 20, | |
| guidance_scale: float = 3.0, | |
| guidance_rescale: float = 0.0, | |
| disable_progress: bool = True, | |
| num_samples_per_content: int = 1, | |
| **kwargs | |
| ): | |
| """ | |
| Inference/generation method for audio diffusion. | |
| Args: | |
| content (list[Any]): List of content dicts. | |
| scheduler (SchedulerMixin): Scheduler for timesteps and noise. | |
| num_steps (int): Number of denoising steps. | |
| guidance_scale (float): Classifier-free guidance scale. | |
| guidance_rescale (float): Rescale factor for guidance. | |
| disable_progress (bool): Disable progress bar. | |
| num_samples_per_content (int): How many samples to generate per content. | |
| Returns: | |
| waveform (Tensor): Generated waveform. | |
| """ | |
| device = self.dummy_param.device | |
| classifier_free_guidance = guidance_scale > 1.0 | |
| batch_size = len(content) * num_samples_per_content | |
| print(content) | |
| if classifier_free_guidance: | |
| content, content_mask, onset, length_list = self.encode_content_classifier_free( | |
| content, num_samples_per_content | |
| ) | |
| else: | |
| content, content_mask, onset, length_list = self.content_encoder.encode_content( | |
| content, device=device | |
| ) | |
| content = content.repeat_interleave(num_samples_per_content, 0) | |
| content_mask = content_mask.repeat_interleave( | |
| num_samples_per_content, 0 | |
| ) | |
| self.noise_scheduler.set_timesteps(num_steps, device=device) | |
| timesteps = self.noise_scheduler.timesteps | |
| # prepare input latent and context for the backbone | |
| shape = (batch_size, 128, onset.shape[2]) # 128 for StableVAE channels | |
| time_aligned_content = onset.permute(0,2,1) | |
| latent = randn_tensor( | |
| shape, generator=None, device=device, dtype=content.dtype | |
| ) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latent = latent * self.noise_scheduler.init_noise_sigma | |
| latent_mask = torch.full((batch_size, onset.shape[2]), False, device=device) | |
| for i, length in enumerate(length_list): | |
| # Set latent mask True for valid time steps for each sample | |
| latent_mask[i, :length] = True | |
| num_warmup_steps = len(timesteps) - num_steps * self.noise_scheduler.order | |
| progress_bar = tqdm(range(num_steps), disable=disable_progress) | |
| if classifier_free_guidance: | |
| uncond_time_aligned_content = torch.zeros_like( | |
| time_aligned_content | |
| ) | |
| time_aligned_content = torch.cat( | |
| [uncond_time_aligned_content, time_aligned_content] | |
| ) | |
| latent_mask = torch.cat( | |
| [latent_mask, latent_mask.detach().clone()] | |
| ) | |
| # iteratively denoising | |
| for i, timestep in enumerate(timesteps): | |
| latent_input = torch.cat( | |
| [latent, latent] | |
| ) if classifier_free_guidance else latent | |
| latent_input = self.noise_scheduler.scale_model_input(latent_input, timestep) | |
| noise_pred = self.backbone( | |
| x=latent_input, | |
| x_mask=latent_mask, | |
| timesteps=timestep, | |
| time_aligned_context=time_aligned_content, | |
| context=content, | |
| context_mask=content_mask, | |
| ) | |
| if classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_content = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_content - noise_pred_uncond | |
| ) | |
| if guidance_rescale != 0.0: | |
| noise_pred = self.rescale_cfg( | |
| noise_pred_content, noise_pred, guidance_rescale | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latent = self.noise_scheduler.step(noise_pred, timestep, latent).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and | |
| (i+1) % self.noise_scheduler.order == 0): | |
| progress_bar.update(1) | |
| #latent = latent.to(next(self.autoencoder.parameters()).device) | |
| waveform = self.autoencoder.decode(latent) | |
| return waveform | |
| def encode_content_classifier_free( | |
| self, | |
| content: list[Any], | |
| task: list[str], | |
| num_samples_per_content: int = 1 | |
| ): | |
| device = self.dummy_param.device | |
| content, content_mask, onset, length_list = self.content_encoder.encode_content( | |
| content, device=device | |
| ) | |
| content = content.repeat_interleave(num_samples_per_content, 0) | |
| content_mask = content_mask.repeat_interleave( | |
| num_samples_per_content, 0 | |
| ) | |
| # get unconditional embeddings for classifier free guidance | |
| uncond_content = torch.zeros_like(content) | |
| uncond_content_mask = content_mask.detach().clone() | |
| uncond_content = uncond_content.repeat_interleave( | |
| num_samples_per_content, 0 | |
| ) | |
| uncond_content_mask = uncond_content_mask.repeat_interleave( | |
| num_samples_per_content, 0 | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes | |
| content = torch.cat([uncond_content, content]) | |
| content_mask = torch.cat([uncond_content_mask, content_mask]) | |
| return content, content_mask, onset, length_list | |
| def rescale_cfg( | |
| self, pred_cond: torch.Tensor, pred_cfg: torch.Tensor, | |
| guidance_rescale: float | |
| ): | |
| """ | |
| Rescale `pred_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
| """ | |
| std_cond = pred_cond.std( | |
| dim=list(range(1, pred_cond.ndim)), keepdim=True | |
| ) | |
| std_cfg = pred_cfg.std(dim=list(range(1, pred_cfg.ndim)), keepdim=True) | |
| pred_rescaled = pred_cfg * (std_cond / std_cfg) | |
| pred_cfg = guidance_rescale * pred_rescaled + ( | |
| 1 - guidance_rescale | |
| ) * pred_cfg | |