Update app.py
Browse files
app.py
CHANGED
|
@@ -1,240 +1,52 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
import torch
|
| 3 |
-
from torch.utils.data import Dataset
|
| 4 |
from transformers import (
|
| 5 |
AutoConfig,
|
| 6 |
AutoTokenizer,
|
| 7 |
AutoModelForCausalLM,
|
| 8 |
-
Trainer,
|
| 9 |
-
TrainingArguments,
|
| 10 |
-
GenerationConfig,
|
| 11 |
pipeline
|
| 12 |
)
|
| 13 |
-
import gradio as gr
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# ---------------------------
|
| 17 |
-
# A) Dummy training dataset
|
| 18 |
-
# ---------------------------
|
| 19 |
-
class MyTextDataset(Dataset):
|
| 20 |
-
"""
|
| 21 |
-
Very simple dataset example. In reality:
|
| 22 |
-
- Use real text data,
|
| 23 |
-
- Possibly use HF 'datasets' library,
|
| 24 |
-
- Tokenize in chunks, etc.
|
| 25 |
-
"""
|
| 26 |
-
def __init__(self, tokenizer, texts, block_size=128):
|
| 27 |
-
self.examples = []
|
| 28 |
-
for txt in texts:
|
| 29 |
-
# Tokenize each text
|
| 30 |
-
tokens = tokenizer(txt, truncation=True, max_length=block_size)
|
| 31 |
-
self.examples.append(tokens["input_ids"])
|
| 32 |
-
|
| 33 |
-
def __len__(self):
|
| 34 |
-
return len(self.examples)
|
| 35 |
-
|
| 36 |
-
def __getitem__(self, idx):
|
| 37 |
-
return torch.tensor(self.examples[idx], dtype=torch.long)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# ---------------------------
|
| 41 |
-
# B) Training routine
|
| 42 |
-
# ---------------------------
|
| 43 |
-
def train_model(
|
| 44 |
-
model_name_or_path="wuhp/myr1",
|
| 45 |
-
subfolder="myr1",
|
| 46 |
-
output_dir="finetuned_myr1",
|
| 47 |
-
epochs=1
|
| 48 |
-
):
|
| 49 |
-
"""
|
| 50 |
-
Demonstrates how to load your custom model from HF, and run a
|
| 51 |
-
quick 'Trainer' to finetune it on some mock texts.
|
| 52 |
-
|
| 53 |
-
- model_name_or_path: huggingface repo ID (or local folder).
|
| 54 |
-
- subfolder: if your model config/weights live in a subfolder
|
| 55 |
-
within that repo, specify it here.
|
| 56 |
-
- output_dir: where to save final trained model.
|
| 57 |
-
- epochs: how many epochs for this mock training example.
|
| 58 |
-
"""
|
| 59 |
-
|
| 60 |
-
# 1) Load config (trust_remote_code=True so we can import custom .py from your repo)
|
| 61 |
-
config = AutoConfig.from_pretrained(
|
| 62 |
-
model_name_or_path,
|
| 63 |
-
subfolder=subfolder,
|
| 64 |
-
trust_remote_code=True
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
# 2) Load tokenizer
|
| 68 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 69 |
-
model_name_or_path,
|
| 70 |
-
subfolder=subfolder,
|
| 71 |
-
trust_remote_code=True
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
# 3) Load model
|
| 75 |
-
# AutoModelForCausalLM will detect your custom architecture from modeling_deepseek.py
|
| 76 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 77 |
-
model_name_or_path,
|
| 78 |
-
subfolder=subfolder,
|
| 79 |
-
config=config,
|
| 80 |
-
torch_dtype=torch.float16, # or "auto", or float32
|
| 81 |
-
device_map="auto", # If you have enough GPU memory, or "cpu"
|
| 82 |
-
trust_remote_code=True
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
# 4) Create a tiny training dataset
|
| 86 |
-
train_texts = [
|
| 87 |
-
"Hello from DeepSeek!",
|
| 88 |
-
"The sky is blue.",
|
| 89 |
-
"Large language models can do amazing things."
|
| 90 |
-
]
|
| 91 |
-
eval_texts = [
|
| 92 |
-
"Testing is essential for robust code.",
|
| 93 |
-
"Generative AI is fun."
|
| 94 |
-
]
|
| 95 |
-
train_dataset = MyTextDataset(tokenizer, train_texts)
|
| 96 |
-
eval_dataset = MyTextDataset(tokenizer, eval_texts)
|
| 97 |
-
|
| 98 |
-
# 5) Trainer hyperparams
|
| 99 |
-
training_args = TrainingArguments(
|
| 100 |
-
output_dir=output_dir,
|
| 101 |
-
overwrite_output_dir=True,
|
| 102 |
-
num_train_epochs=epochs,
|
| 103 |
-
per_device_train_batch_size=1,
|
| 104 |
-
per_device_eval_batch_size=1,
|
| 105 |
-
evaluation_strategy="epoch",
|
| 106 |
-
save_strategy="epoch",
|
| 107 |
-
logging_steps=1,
|
| 108 |
-
gradient_accumulation_steps=1,
|
| 109 |
-
fp16=True if torch.cuda.is_available() else False,
|
| 110 |
-
# If you have limited VRAM and can't do FP16, set fp16=False above
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
# 6) Define data collator for causal LM. Typically:
|
| 114 |
-
from transformers import DataCollatorForLanguageModeling
|
| 115 |
-
data_collator = DataCollatorForLanguageModeling(
|
| 116 |
-
tokenizer=tokenizer, mlm=False
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
# 7) Build trainer
|
| 120 |
-
trainer = Trainer(
|
| 121 |
-
model=model,
|
| 122 |
-
args=training_args,
|
| 123 |
-
data_collator=data_collator,
|
| 124 |
-
train_dataset=train_dataset,
|
| 125 |
-
eval_dataset=eval_dataset
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
# 8) Train
|
| 129 |
-
trainer.train()
|
| 130 |
-
|
| 131 |
-
# 9) Save model & tokenizer
|
| 132 |
-
trainer.save_model(output_dir)
|
| 133 |
-
tokenizer.save_pretrained(output_dir)
|
| 134 |
-
|
| 135 |
-
return trainer
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
# ---------------------------
|
| 139 |
-
# C) Gradio app function
|
| 140 |
-
# ---------------------------
|
| 141 |
-
def create_gradio_demo(
|
| 142 |
-
model_name_or_path="finetuned_myr1",
|
| 143 |
-
generation_config_path=None
|
| 144 |
-
):
|
| 145 |
-
"""
|
| 146 |
-
Loads a (fine-tuned) model from local or HF, sets up
|
| 147 |
-
a text-generation pipeline, and returns a Gradio interface.
|
| 148 |
-
"""
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
#
|
| 154 |
-
|
|
|
|
| 155 |
model = AutoModelForCausalLM.from_pretrained(
|
| 156 |
-
|
|
|
|
| 157 |
config=config,
|
| 158 |
-
torch_dtype=torch.float16
|
| 159 |
device_map="auto",
|
| 160 |
trust_remote_code=True
|
| 161 |
)
|
| 162 |
-
|
| 163 |
-
# 3) (Optional) load generation config if present
|
| 164 |
-
# e.g. custom top_k, top_p, temperature, etc.
|
| 165 |
-
# If your repo has "generation_config.json" in subfolder="myr1",
|
| 166 |
-
# you could also do:
|
| 167 |
-
# GenerationConfig.from_pretrained("wuhp/myr1", subfolder="myr1", ...)
|
| 168 |
-
# Or from local path if downloaded.
|
| 169 |
-
if generation_config_path:
|
| 170 |
-
gen_config = GenerationConfig.from_json_file(generation_config_path)
|
| 171 |
-
else:
|
| 172 |
-
# fallback to default or config
|
| 173 |
-
gen_config = GenerationConfig.from_model_config(config)
|
| 174 |
-
|
| 175 |
-
# 4) Build a text-generation pipeline
|
| 176 |
text_pipeline = pipeline(
|
| 177 |
"text-generation",
|
| 178 |
model=model,
|
| 179 |
-
tokenizer=tokenizer
|
| 180 |
-
generation_config=gen_config,
|
| 181 |
)
|
|
|
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
"""
|
| 186 |
-
Generates text from the model given a user prompt.
|
| 187 |
-
"""
|
| 188 |
-
outputs = text_pipeline(
|
| 189 |
-
prompt,
|
| 190 |
-
max_new_tokens=int(max_new_tokens),
|
| 191 |
-
temperature=float(temperature),
|
| 192 |
-
top_p=float(top_p)
|
| 193 |
-
)
|
| 194 |
-
# The pipeline returns a list of dicts like [{'generated_text': '...'}]
|
| 195 |
-
return outputs[0]["generated_text"]
|
| 196 |
-
|
| 197 |
-
# 6) Create the Gradio Interface
|
| 198 |
-
with gr.Blocks() as demo:
|
| 199 |
-
gr.Markdown("## DeepSeek LLM Demo")
|
| 200 |
-
prompt = gr.Textbox(label="Enter your prompt:")
|
| 201 |
-
max_new_tokens = gr.Slider(1, 512, step=1, value=64, label="Max New Tokens")
|
| 202 |
-
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
|
| 203 |
-
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.95, label="Top-p")
|
| 204 |
-
output = gr.Textbox(label="Generated Text")
|
| 205 |
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
inputs=[prompt, max_new_tokens, temperature, top_p],
|
| 210 |
-
outputs=output
|
| 211 |
-
)
|
| 212 |
-
return demo
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
# ---------------------------
|
| 216 |
-
# D) Main: train + launch
|
| 217 |
-
# ---------------------------
|
| 218 |
-
if __name__ == "__main__":
|
| 219 |
-
# 1) TRAIN (mock demonstration).
|
| 220 |
-
# If you just want to *load* your existing model, skip this step.
|
| 221 |
-
print("Starting mock training on wuhp/myr1 (subfolder myr1)...")
|
| 222 |
-
trainer = train_model(
|
| 223 |
-
model_name_or_path="wuhp/myr1",
|
| 224 |
-
subfolder="myr1",
|
| 225 |
-
output_dir="finetuned_myr1",
|
| 226 |
-
epochs=1
|
| 227 |
)
|
| 228 |
-
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
| 237 |
|
| 238 |
-
|
| 239 |
-
print("Launching Gradio demo on http://127.0.0.1:7860 ...")
|
| 240 |
-
demo.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
import torch
|
|
|
|
| 4 |
from transformers import (
|
| 5 |
AutoConfig,
|
| 6 |
AutoTokenizer,
|
| 7 |
AutoModelForCausalLM,
|
|
|
|
|
|
|
|
|
|
| 8 |
pipeline
|
| 9 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# 1) Decorate your GPU-dependent function(s)
|
| 12 |
+
@spaces.GPU(duration=60) # default is 60s, can increase if needed
|
| 13 |
+
def load_pipeline():
|
| 14 |
+
# -- load config & model from wuhp/myr1 --
|
| 15 |
+
config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
| 17 |
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
+
"wuhp/myr1",
|
| 19 |
+
subfolder="myr1",
|
| 20 |
config=config,
|
| 21 |
+
torch_dtype=torch.float16, # half precision
|
| 22 |
device_map="auto",
|
| 23 |
trust_remote_code=True
|
| 24 |
)
|
| 25 |
+
# optional: load generation config if you have generation_config.json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
text_pipeline = pipeline(
|
| 27 |
"text-generation",
|
| 28 |
model=model,
|
| 29 |
+
tokenizer=tokenizer
|
|
|
|
| 30 |
)
|
| 31 |
+
return text_pipeline
|
| 32 |
|
| 33 |
+
# We'll load it once and store globally
|
| 34 |
+
text_pipeline = load_pipeline()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
def predict(prompt, max_new_tokens=64):
|
| 37 |
+
outputs = text_pipeline(
|
| 38 |
+
prompt, max_new_tokens=int(max_new_tokens), do_sample=True, temperature=0.7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
)
|
| 40 |
+
return outputs[0]["generated_text"]
|
| 41 |
|
| 42 |
+
# 2) Build your Gradio app
|
| 43 |
+
with gr.Blocks() as demo:
|
| 44 |
+
gr.Markdown("## My LLM Inference (ZeroGPU)")
|
| 45 |
+
prompt = gr.Textbox(label="Prompt")
|
| 46 |
+
max_nt = gr.Slider(1, 200, value=64, step=1, label="Max New Tokens")
|
| 47 |
+
output = gr.Textbox(label="Generated Text")
|
| 48 |
+
|
| 49 |
+
btn = gr.Button("Generate")
|
| 50 |
+
btn.click(fn=predict, inputs=[prompt, max_nt], outputs=output)
|
| 51 |
|
| 52 |
+
demo.launch()
|
|
|
|
|
|