Update app.py
Browse files
app.py
CHANGED
|
@@ -1,52 +1,73 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
import torch
|
|
|
|
|
|
|
| 4 |
from transformers import (
|
| 5 |
AutoConfig,
|
| 6 |
AutoTokenizer,
|
| 7 |
AutoModelForCausalLM,
|
| 8 |
-
|
| 9 |
)
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
| 17 |
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
"wuhp/myr1",
|
| 19 |
subfolder="myr1",
|
| 20 |
config=config,
|
| 21 |
-
torch_dtype=torch.float16,
|
| 22 |
device_map="auto",
|
| 23 |
trust_remote_code=True
|
| 24 |
)
|
| 25 |
-
# optional: load generation config if you have generation_config.json
|
| 26 |
-
text_pipeline = pipeline(
|
| 27 |
-
"text-generation",
|
| 28 |
-
model=model,
|
| 29 |
-
tokenizer=tokenizer
|
| 30 |
-
)
|
| 31 |
-
return text_pipeline
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
)
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
#
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
max_nt = gr.Slider(1, 200, value=64, step=1, label="Max New Tokens")
|
| 47 |
-
output = gr.Textbox(label="Generated Text")
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
+
from transformers import Trainer, TrainingArguments
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
from transformers import (
|
| 7 |
AutoConfig,
|
| 8 |
AutoTokenizer,
|
| 9 |
AutoModelForCausalLM,
|
| 10 |
+
DataCollatorForLanguageModeling,
|
| 11 |
)
|
| 12 |
|
| 13 |
+
@spaces.GPU(duration=600) # 10 minutes
|
| 14 |
+
def run_finetuning():
|
| 15 |
+
# Load dataset
|
| 16 |
+
ds = load_dataset("Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B")
|
| 17 |
+
# maybe select a small subset (like 1000 rows) or you'll likely time out
|
| 18 |
+
ds_small = ds["train"].select(range(1000))
|
| 19 |
+
|
| 20 |
+
# Format example:
|
| 21 |
+
def format_row(ex):
|
| 22 |
+
return {"text": f"User: {ex['instruction']}\nAssistant: {ex['response']}"}
|
| 23 |
+
ds_small = ds_small.map(format_row)
|
| 24 |
+
|
| 25 |
+
# Load config/tokenizer/model with trust_remote_code
|
| 26 |
config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
| 27 |
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
| 28 |
model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
"wuhp/myr1",
|
| 30 |
subfolder="myr1",
|
| 31 |
config=config,
|
| 32 |
+
torch_dtype=torch.float16,
|
| 33 |
device_map="auto",
|
| 34 |
trust_remote_code=True
|
| 35 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# Tokenize
|
| 38 |
+
def tokenize(ex):
|
| 39 |
+
return tokenizer(ex["text"], truncation=True, max_length=512)
|
| 40 |
+
ds_small = ds_small.map(tokenize, batched=True)
|
| 41 |
+
|
| 42 |
+
ds_small.set_format("torch")
|
| 43 |
+
collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
|
| 44 |
|
| 45 |
+
# Trainer
|
| 46 |
+
args = TrainingArguments(
|
| 47 |
+
output_dir="finetuned_model",
|
| 48 |
+
num_train_epochs=1,
|
| 49 |
+
per_device_train_batch_size=1,
|
| 50 |
+
logging_steps=5,
|
| 51 |
+
fp16=True,
|
| 52 |
+
save_strategy="no",
|
| 53 |
)
|
| 54 |
+
trainer = Trainer(
|
| 55 |
+
model=model,
|
| 56 |
+
args=args,
|
| 57 |
+
train_dataset=ds_small,
|
| 58 |
+
data_collator=collator,
|
| 59 |
+
)
|
| 60 |
+
trainer.train()
|
| 61 |
|
| 62 |
+
# Save
|
| 63 |
+
trainer.save_model("finetuned_model")
|
| 64 |
+
tokenizer.save_pretrained("finetuned_model")
|
| 65 |
+
return "Finetuning done!"
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
# Then define a Gradio UI that calls run_finetuning
|
| 68 |
+
with gr.Blocks() as demo:
|
| 69 |
+
btn = gr.Button("Run Finetuning (10 min max!)")
|
| 70 |
+
status = gr.Textbox(label="Status")
|
| 71 |
+
btn.click(fn=run_finetuning, inputs=None, outputs=status)
|
| 72 |
|
| 73 |
demo.launch()
|