File size: 32,841 Bytes
2a0a7c9 1aeff90 2a0a7c9 1aeff90 b9fc80b 1aeff90 b9fc80b 2a0a7c9 b9fc80b 1aeff90 b9fc80b 2a0a7c9 f735495 2a0a7c9 1aeff90 ae4cf01 b9fc80b 2a0a7c9 1aeff90 2a0a7c9 f735495 2a0a7c9 c54a7a8 1aeff90 c54a7a8 1aeff90 c54a7a8 f735495 2a0a7c9 c54a7a8 f735495 c54a7a8 2a0a7c9 c54a7a8 1aeff90 b9fc80b 1aeff90 b9fc80b 1aeff90 b9fc80b 1aeff90 0257e16 2a0a7c9 0257e16 2a0a7c9 0257e16 b9fc80b 2a0a7c9 1aeff90 b9fc80b c54a7a8 1aeff90 c54a7a8 0257e16 2a0a7c9 b9fc80b 1aeff90 b9fc80b c54a7a8 2a0a7c9 c54a7a8 b9fc80b c54a7a8 f735495 c54a7a8 2a0a7c9 b9fc80b f735495 b9fc80b c54a7a8 b9fc80b c54a7a8 b9fc80b c54a7a8 b9fc80b c54a7a8 2a0a7c9 c54a7a8 b9fc80b c54a7a8 b9fc80b c54a7a8 b9fc80b 1aeff90 b9fc80b 2a0a7c9 b9fc80b c54a7a8 b9fc80b c54a7a8 b9fc80b c54a7a8 b9fc80b c54a7a8 2a0a7c9 c54a7a8 b9fc80b c54a7a8 b9fc80b c54a7a8 2a0a7c9 c54a7a8 b9fc80b c54a7a8 b9fc80b c54a7a8 1aeff90 c54a7a8 b9fc80b c54a7a8 b9fc80b c54a7a8 b9fc80b c54a7a8 b9fc80b 1aeff90 2a0a7c9 f735495 2a0a7c9 ae4cf01 2a0a7c9 ae4cf01 2a0a7c9 f735495 2a0a7c9 f735495 2a0a7c9 1aeff90 b9fc80b c54a7a8 1aeff90 c54a7a8 b9fc80b c54a7a8 2a0a7c9 c54a7a8 b9fc80b c54a7a8 b9fc80b c54a7a8 b9fc80b c54a7a8 1aeff90 2a0a7c9 0257e16 b9fc80b 2a0a7c9 b9fc80b 2a0a7c9 c54a7a8 2a0a7c9 c54a7a8 b9fc80b c54a7a8 2a0a7c9 c54a7a8 b9fc80b c54a7a8 2a0a7c9 c54a7a8 2a0a7c9 a68cd78 f735495 a68cd78 c54a7a8 a68cd78 c54a7a8 a68cd78 c54a7a8 a68cd78 c54a7a8 2a0a7c9 1aeff90 b9fc80b c54a7a8 2a0a7c9 b9fc80b c54a7a8 b9fc80b 2a0a7c9 c54a7a8 2a0a7c9 f735495 2a0a7c9 f735495 2a0a7c9 1aeff90 2a0a7c9 1aeff90 2a0a7c9 c54a7a8 b9fc80b c54a7a8 2a0a7c9 b9fc80b c54a7a8 1aeff90 b9fc80b c54a7a8 1aeff90 b9fc80b c54a7a8 2a0a7c9 b9fc80b c54a7a8 b9fc80b c54a7a8 2a0a7c9 c54a7a8 2a0a7c9 c54a7a8 b9fc80b 1aeff90 2a0a7c9 b9fc80b 2a0a7c9 c54a7a8 b9fc80b 2a0a7c9 b9fc80b 2a0a7c9 b9fc80b c54a7a8 b9fc80b 2a0a7c9 b9fc80b c54a7a8 b9fc80b 2a0a7c9 b9fc80b 2a0a7c9 c54a7a8 f735495 b9fc80b f735495 b9fc80b a68cd78 2a0a7c9 b9fc80b 2a0a7c9 b9fc80b 2a0a7c9 b9fc80b f735495 b9fc80b f735495 b9fc80b 2a0a7c9 c54a7a8 2a0a7c9 c54a7a8 b9fc80b 2a0a7c9 c54a7a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
# app.py
# Rolo: RT-DETRv2-only Training Dashboard (Supervisely ecosystem)
# - No Ultralytics import or usage
# - Auto-installs deps in HF Spaces
# - Only supports models that ship with https://github.com/supervisely-ecosystem/RT-DETRv2
import os
import sys
import subprocess
import shutil
import stat
import yaml
import gradio as gr
from roboflow import Roboflow
import re
from urllib.parse import urlparse
import random
import logging
import requests
import json
from PIL import Image
import torch
import pandas as pd
import matplotlib.pyplot as plt
from threading import Thread
from queue import Queue
from glob import glob
import time
import base64
# --- Logging ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
REPO_URL = "https://github.com/supervisely-ecosystem/RT-DETRv2" # :contentReference[oaicite:1]{index=1}
REPO_DIR = os.path.join(os.getcwd(), "third_party", "RT-DETRv2")
PY_IMPL_DIR = os.path.join(REPO_DIR, "rtdetrv2_pytorch") # contains the pytorch impl (models, training)
WEIGHTS_DIR = os.path.join(PY_IMPL_DIR, "weights")
# ------------------------------
# Environment bootstrap (HF Spaces)
# ------------------------------
COMMON_REQUIREMENTS = [
"gradio>=4.36.1",
"roboflow>=1.1.28",
"pandas>=2.0.0",
"matplotlib>=3.7.0",
"pyyaml>=6.0.1",
"Pillow>=10.0.0",
"requests>=2.31.0",
"huggingface_hub>=0.22.0",
]
def pip_install(args):
logging.info(f"pip install {' '.join(args)}")
subprocess.check_call([sys.executable, "-m", "pip", "install"] + args)
def ensure_repo_and_requirements():
os.makedirs(os.path.dirname(REPO_DIR), exist_ok=True)
if not os.path.exists(REPO_DIR):
logging.info(f"Cloning RT-DETRv2 repo to {REPO_DIR} ...")
subprocess.check_call(["git", "clone", "--depth", "1", REPO_URL, REPO_DIR])
else:
logging.info("RT-DETRv2 repo already present, pulling latest...")
try:
subprocess.check_call(["git", "-C", REPO_DIR, "pull", "--ff-only"])
except Exception:
logging.warning("Could not pull latest; continuing with current checkout.")
# Install common libs
pip_install(COMMON_REQUIREMENTS)
# Install rtdetrv2_pytorch requirements if present
req_file = os.path.join(PY_IMPL_DIR, "requirements.txt")
if os.path.exists(req_file):
pip_install(["-r", req_file])
else:
logging.info("No rtdetrv2_pytorch/requirements.txt found; relying on common reqs.")
# Do the bootstrap once at import time (HF Spaces-friendly).
try:
ensure_repo_and_requirements()
except Exception as e:
logging.exception("Bootstrap failed")
# Still allow UI to load so user can see the error
pass
# ------------------------------
# Model options (strictly from RT-DETRv2 repo)
# ------------------------------
# We expose only the canonical small/large/xlarge variants that ship with the repo.
# If the repo adds/removes variants, you can read from weights dir dynamically.
MODEL_CHOICES = [
("rtdetrv2_s", "Small (default)"),
("rtdetrv2_l", "Large"),
("rtdetrv2_x", "X-Large")
]
DEFAULT_MODEL_KEY = "rtdetrv2_s" # Small as default
# ------------------------------
# Utilities
# ------------------------------
def handle_remove_readonly(func, path, exc_info):
try:
os.chmod(path, stat.S_IWRITE)
except Exception:
pass
func(path)
_ROBO_URL_RX = re.compile(
r"""
^(?:
(?:https?://)?(?:universe|app|www)?\.?roboflow\.com/
(?P<ws>[A-Za-z0-9\-_]+)/
(?P<proj>[A-Za-z0-9\-_]+)/?
(?:(?:dataset/[^/]+/)?(?:v?(?P<ver>\d+))?)?
|
(?P<ws2>[A-Za-z0-9\-_]+)/(?P<proj2>[A-Za-z0-9\-_]+)(?:/(?:v)?(?P<ver2>\d+))?
)$
""", re.VERBOSE | re.IGNORECASE
)
def parse_roboflow_url(s: str):
s = s.strip()
m = _ROBO_URL_RX.match(s)
if m:
ws = m.group('ws') or m.group('ws2')
proj = m.group('proj') or m.group('proj2')
ver = m.group('ver') or m.group('ver2')
return ws, proj, (int(ver) if ver else None)
parsed = urlparse(s)
parts = [p for p in parsed.path.strip('/').split('/') if p]
if len(parts) >= 2:
version = None
if len(parts) >= 3:
vpart = parts[2]
if vpart.lower().startswith('v') and vpart[1:].isdigit():
version = int(vpart[1:])
elif vpart.isdigit():
version = int(vpart)
return parts[0], parts[1], version
if '/' in s and 'roboflow' not in s:
p = s.split('/')
if len(p) >= 2:
version = None
if len(p) >= 3:
v = p[2]
if v.lower().startswith('v') and v[1:].isdigit():
version = int(v[1:])
elif v.isdigit():
version = int(v)
return p[0], p[1], version
return None, None, None
def get_latest_version(api_key, workspace, project):
try:
rf = Roboflow(api_key=api_key)
proj = rf.workspace(workspace).project(project)
versions = sorted([int(v.version) for v in proj.versions()], reverse=True)
return versions[0] if versions else None
except Exception as e:
logging.error(f"Could not get latest version for {workspace}/{project}: {e}")
return None
def _extract_class_names(data_yaml):
names = data_yaml.get('names', None)
if isinstance(names, dict):
def _k(x):
try:
return int(x)
except Exception:
return str(x)
ordered_keys = sorted(names.keys(), key=_k)
names_list = [names[k] for k in ordered_keys]
elif isinstance(names, list):
names_list = names
else:
nc = data_yaml.get('nc', 0)
try:
nc = int(nc)
except Exception:
nc = 0
names_list = [f"class_{i}" for i in range(nc)]
return [str(x) for x in names_list]
def download_dataset(api_key, workspace, project, version):
"""Download a Roboflow dataset in YOLOv8 format (labels are compatible with our merger)."""
try:
rf = Roboflow(api_key=api_key)
proj = rf.workspace(workspace).project(project)
ver = proj.version(int(version))
dataset = ver.download("yolov8")
data_yaml_path = os.path.join(dataset.location, 'data.yaml')
with open(data_yaml_path, 'r') as f:
data_yaml = yaml.safe_load(f)
class_names = _extract_class_names(data_yaml)
try:
nc = int(data_yaml.get('nc', len(class_names)))
except Exception:
nc = len(class_names)
if len(class_names) != nc:
logging.warning(f"[{project}-v{version}] names length ({len(class_names)}) != nc ({nc}); using normalized names.")
splits = [s for s in ['train', 'valid', 'test'] if os.path.exists(os.path.join(dataset.location, s))]
return dataset.location, class_names, splits, f"{project}-v{version}"
except Exception as e:
logging.error(f"Failed to download {workspace}/{project}/v{version}: {e}")
return None, [], [], None
def label_path_for(img_path: str) -> str:
split_dir = os.path.dirname(os.path.dirname(img_path))
base = os.path.splitext(os.path.basename(img_path))[0] + '.txt'
return os.path.join(split_dir, 'labels', base)
def gather_class_counts(dataset_info, class_mapping):
if not dataset_info:
return {}
final_names = set(v for v in class_mapping.values() if v is not None)
counts = {name: 0 for name in final_names}
for loc, names, splits, _ in dataset_info:
id_to_name = {idx: class_mapping.get(n, None) for idx, n in enumerate(names)}
for split in splits:
labels_dir = os.path.join(loc, split, 'labels')
if not os.path.exists(labels_dir):
continue
for label_file in os.listdir(labels_dir):
if not label_file.endswith('.txt'):
continue
found = set()
with open(os.path.join(labels_dir, label_file), 'r') as f:
for line in f:
parts = line.strip().split()
if not parts:
continue
try:
cls_id = int(parts[0])
mapped = id_to_name.get(cls_id, None)
if mapped:
found.add(mapped)
except Exception:
continue
for m in found:
counts[m] += 1
return counts
def finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress=gr.Progress()):
merged_dir = 'rolo_merged_dataset'
if os.path.exists(merged_dir):
shutil.rmtree(merged_dir, onerror=handle_remove_readonly)
progress(0, desc="Creating directories...")
for split in ['train', 'valid', 'test']:
os.makedirs(os.path.join(merged_dir, split, 'images'), exist_ok=True)
os.makedirs(os.path.join(merged_dir, split, 'labels'), exist_ok=True)
active_classes = sorted({cls for cls, limit in class_limits.items() if limit > 0})
final_class_map = {name: i for i, name in enumerate(active_classes)}
all_images = []
for loc, _, splits, _ in dataset_info:
for split in splits:
img_dir = os.path.join(loc, split, 'images')
if not os.path.exists(img_dir):
continue
for img_file in os.listdir(img_dir):
if img_file.lower().endswith(('.jpg', '.jpeg', '.png')):
all_images.append((os.path.join(img_dir, img_file), split, loc))
random.shuffle(all_images)
progress(0.2, desc="Selecting images based on limits...")
selected_images = []
current_counts = {cls: 0 for cls in active_classes}
loc_to_names = {info[0]: info[1] for info in dataset_info}
# progress.tqdm is available on Gradio Progress objects
for img_path, split, source_loc in progress.tqdm(all_images, desc="Analyzing images"):
lbl_path = label_path_for(img_path)
if not os.path.exists(lbl_path):
continue
source_names = loc_to_names.get(source_loc, [])
image_classes = set()
with open(lbl_path, 'r') as f:
for line in f:
parts = line.strip().split()
if not parts:
continue
try:
cls_id = int(parts[0])
orig = source_names[cls_id]
mapped = class_mapping.get(orig, orig)
if mapped in active_classes:
image_classes.add(mapped)
except Exception:
continue
if not image_classes:
continue
if any(current_counts[c] >= class_limits[c] for c in image_classes):
continue
selected_images.append((img_path, split))
for c in image_classes:
current_counts[c] += 1
progress(0.6, desc=f"Copying {len(selected_images)} files...")
for img_path, split in progress.tqdm(selected_images, desc="Finalizing files"):
lbl_path = label_path_for(img_path)
out_img = os.path.join(merged_dir, split, 'images', os.path.basename(img_path))
out_lbl = os.path.join(merged_dir, split, 'labels', os.path.basename(lbl_path))
shutil.copy(img_path, out_img)
source_loc = None
for info in dataset_info:
if img_path.startswith(info[0]):
source_loc = info[0]
break
source_names = loc_to_names.get(source_loc, [])
with open(lbl_path, 'r') as f_in, open(out_lbl, 'w') as f_out:
for line in f_in:
parts = line.strip().split()
if not parts:
continue
try:
old_id = int(parts[0])
original_name = source_names[old_id]
mapped_name = class_mapping.get(original_name, original_name)
if mapped_name in final_class_map:
new_id = final_class_map[mapped_name]
f_out.write(f"{new_id} {' '.join(parts[1:])}\n")
except Exception:
continue
progress(0.95, desc="Creating data.yaml...")
with open(os.path.join(merged_dir, 'data.yaml'), 'w') as f:
yaml.dump({
'path': os.path.abspath(merged_dir),
'train': 'train/images',
'val': 'valid/images',
'test': 'test/images',
'nc': len(active_classes),
'names': active_classes
}, f)
return f"Dataset finalized with {len(selected_images)} images.", os.path.abspath(merged_dir)
# ------------------------------
# Training integration (RT-DETRv2 repo)
# ------------------------------
def detect_training_entrypoint():
"""
We try a couple of common patterns inside the Supervisely repo:
1) rtdetrv2_pytorch/train.py
2) tools/train.py
Returns (python_file, style) where style hints how to build args.
"""
cand1 = os.path.join(PY_IMPL_DIR, "train.py")
cand2 = os.path.join(REPO_DIR, "tools", "train.py")
if os.path.exists(cand1):
return cand1, "pytorch_train"
if os.path.exists(cand2):
return cand2, "tools_train"
# Fallback: just try main.py if present
cand3 = os.path.join(REPO_DIR, "src", "main.py")
if os.path.exists(cand3):
return cand3, "app_main"
return None, None
def build_command(entrypoint, style, dataset_path, model_key, run_name, epochs, batch, imgsz, lr, optimizer):
"""
Build a best-guess command for the detected style.
Users never have to edit CLI; we do it for them.
We keep args conservative and standard (data, epochs, batch, img size).
"""
data_yaml = os.path.join(dataset_path, "data.yaml")
out_dir = os.path.join("runs", "train", str(run_name))
os.makedirs(out_dir, exist_ok=True)
# Some repos expect weight/model name; we pass model_key (e.g., rtdetrv2_s) and let their script resolve it.
# Learning rate / optimizer flags may differ; include only when style suggests they're supported.
if style == "pytorch_train":
# Hypothetical common args for a train.py inside rtdetrv2_pytorch
cmd = [
sys.executable, entrypoint,
"--data", data_yaml,
"--model", model_key,
"--epochs", str(int(epochs)),
"--batch", str(int(batch)),
"--imgsz", str(int(imgsz)),
"--project", os.path.abspath(out_dir)
]
if lr is not None:
cmd += ["--lr", str(float(lr))]
if optimizer:
cmd += ["--optimizer", str(optimizer)]
return cmd, out_dir
if style == "tools_train":
# Alternate style (tools/train.py). We keep flags generic.
cmd = [
sys.executable, entrypoint,
"--data", data_yaml,
"--model", model_key,
"--epochs", str(int(epochs)),
"--batch-size", str(int(batch)),
"--imgsz", str(int(imgsz)),
"--project", os.path.abspath(out_dir),
"--name", "exp"
]
if lr is not None:
cmd += ["--lr0", str(float(lr))]
if optimizer:
cmd += ["--optimizer", str(optimizer)]
return cmd, out_dir
if style == "app_main":
# If app_main exists, it may require an options file; we still try a generic mapping.
cmd = [
sys.executable, entrypoint,
"--data", data_yaml,
"--model", model_key,
"--epochs", str(int(epochs)),
"--batch", str(int(batch)),
"--imgsz", str(int(imgsz)),
"--output", os.path.abspath(out_dir)
]
if lr is not None:
cmd += ["--lr", str(float(lr))]
if optimizer:
cmd += ["--optimizer", str(optimizer)]
return cmd, out_dir
raise gr.Error("Could not locate a training script inside RT-DETRv2 repo. Please check the repo layout.")
def find_best_checkpoint(out_dir):
# Look for common patterns
patterns = [
os.path.join(out_dir, "**", "best*.pt"),
os.path.join(out_dir, "**", "best*.pth"),
os.path.join(out_dir, "**", "model_best*.pt"),
os.path.join(out_dir, "**", "model_best*.pth"),
]
for p in patterns:
files = sorted(glob(p, recursive=True))
if files:
return files[0]
# Fall back to latest .pt/.pth
any_ckpt = sorted(glob(os.path.join(out_dir, "**", "*.pt"), recursive=True) +
glob(os.path.join(out_dir, "**", "*.pth"), recursive=True))
return any_ckpt[-1] if any_ckpt else None
# ------------------------------
# Gradio Handlers
# ------------------------------
def load_datasets_handler(api_key, url_file, progress=gr.Progress()):
api_key = api_key or os.getenv("ROBOFLOW_API_KEY", "")
if not api_key:
raise gr.Error("Roboflow API Key is required (or set ROBOFLOW_API_KEY).")
if not url_file:
raise gr.Error("Please upload a .txt file with Roboflow URLs or lines like 'workspace/project[/vN]'.")
with open(url_file.name, 'r', encoding='utf-8', errors='ignore') as f:
urls = [line.strip() for line in f if line.strip()]
dataset_info, failures = [], []
for i, raw in enumerate(urls):
progress((i + 1) / max(1, len(urls)), desc=f"Parsing {i+1}/{len(urls)}")
ws, proj, ver = parse_roboflow_url(raw)
if not (ws and proj):
failures.append((raw, "ParseError: could not resolve workspace/project"))
continue
if ver is None:
ver = get_latest_version(api_key, ws, proj)
if ver is None:
failures.append((raw, f"Could not resolve latest version for {ws}/{proj}"))
continue
loc, names, splits, name_str = download_dataset(api_key, ws, proj, int(ver))
if loc:
dataset_info.append((loc, names, splits, name_str))
else:
failures.append((raw, f"DownloadError: {ws}/{proj}/v{ver}"))
if not dataset_info:
msg = "No datasets were loaded successfully.\n" + "\n".join([f"- {u}: {why}" for u, why in failures[:10]])
raise gr.Error(msg)
# Make sure names are strings before sorting to avoid mixed-type comparison
all_names = sorted({str(n) for _, names, _, _ in dataset_info for n in names})
class_map = {name: name for name in all_names}
initial_counts = gather_class_counts(dataset_info, class_map)
df = pd.DataFrame([[name, name, initial_counts.get(name, 0), False] for name in all_names],
columns=["Original Name", "Rename To", "Max Images", "Remove"])
status_text = "Datasets loaded successfully."
if failures:
status_text += f" ({len(dataset_info)} OK, {len(failures)} failed; see console logs)."
# Return the DataFrame value directly (works across Gradio versions)
return status_text, dataset_info, df
def update_class_counts_handler(class_df, dataset_info):
if class_df is None or not dataset_info:
return None
class_df = pd.DataFrame(class_df)
mapping = {}
for _, row in class_df.iterrows():
orig = row["Original Name"]
mapping[orig] = None if bool(row["Remove"]) else row["Rename To"]
final_names = sorted(set(v for v in mapping.values() if v))
counts = {k: 0 for k in final_names}
for loc, names, splits, _ in dataset_info:
id_to_final = {idx: mapping.get(n, None) for idx, n in enumerate(names)}
for split in splits:
labels_dir = os.path.join(loc, split, 'labels')
if not os.path.exists(labels_dir):
continue
for label_file in os.listdir(labels_dir):
if not label_file.endswith('.txt'):
continue
found = set()
with open(os.path.join(labels_dir, label_file), 'r') as f:
for line in f:
parts = line.strip().split()
if not parts:
continue
try:
cls_id = int(parts[0])
mapped = id_to_final.get(cls_id, None)
if mapped:
found.add(mapped)
except Exception:
continue
for m in found:
counts[m] += 1
return pd.DataFrame(list(counts.items()), columns=["Final Class Name", "Est. Total Images"])
def finalize_handler(dataset_info, class_df, progress=gr.Progress()):
if not dataset_info:
raise gr.Error("Load datasets first in Tab 1.")
if class_df is None:
raise gr.Error("Class data is missing.")
class_df = pd.DataFrame(class_df)
class_mapping, class_limits = {}, {}
for _, row in class_df.iterrows():
orig = row["Original Name"]
if bool(row["Remove"]):
continue
final_name = row["Rename To"]
class_mapping[orig] = final_name
class_limits[final_name] = class_limits.get(final_name, 0) + int(row["Max Images"])
status, path = finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress)
return status, path
def training_handler(dataset_path, model_choice_key, run_name, epochs, batch, imgsz, lr, opt, progress=gr.Progress()):
if not dataset_path:
raise gr.Error("Finalize a dataset in Tab 2 before training.")
# Verify repo entrypoint
entrypoint, style = detect_training_entrypoint()
if not entrypoint:
raise gr.Error("RT-DETRv2 training script not found in the repo. Please check repo contents.")
# Build and run command (users never touch CLI)
cmd, out_dir = build_command(
entrypoint=entrypoint,
style=style,
dataset_path=dataset_path,
model_key=model_choice_key,
run_name=run_name,
epochs=epochs,
batch=batch,
imgsz=imgsz,
lr=lr,
optimizer=opt
)
logging.info(f"Training command: {' '.join(cmd)}")
# Live-run in a thread and stream logs
q = Queue()
def run_train():
try:
env = os.environ.copy()
env["PYTHONPATH"] = REPO_DIR + os.pathsep + env.get("PYTHONPATH", "")
proc = subprocess.Popen(cmd, cwd=REPO_DIR, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, text=True, env=env)
for line in proc.stdout:
q.put(line.rstrip())
proc.wait()
q.put(f"__EXITCODE__:{proc.returncode}")
except Exception as e:
q.put(f"__ERROR__:{e}")
Thread(target=run_train, daemon=True).start()
log_lines = []
last_epoch = 0
total_epochs = int(epochs)
while True:
line = q.get()
if line.startswith("__EXITCODE__"):
code = int(line.split(":", 1)[1])
if code != 0:
raise gr.Error(f"Training process exited with code {code}. Check logs above.")
break
if line.startswith("__ERROR__"):
raise gr.Error(f"Training failed: {line.split(':',1)[1]}")
log_lines.append(line)
# try to parse "Epoch X/Y" style hints for progress
m = re.search(r"[Ee]poch\s+(\d+)\s*/\s*(\d+)", line)
if m:
try:
last_epoch = int(m.group(1))
total_epochs = max(total_epochs, int(m.group(2)))
except Exception:
pass
frac = min(max(last_epoch / max(1, total_epochs), 0.0), 1.0)
progress(frac, desc=f"Epoch {last_epoch}/{total_epochs}")
# Light-weight plots (we won't have metrics dicts; just show empty placeholders so UI doesn't break)
fig_loss = plt.figure()
ax_loss = fig_loss.add_subplot(111)
ax_loss.set_title("Loss (see logs)")
fig_map = plt.figure()
ax_map = fig_map.add_subplot(111)
ax_map.set_title("mAP (see logs)")
yield "\n".join(log_lines[-30:]), fig_loss, fig_map, None
# Look for the best checkpoint
ckpt = find_best_checkpoint(out_dir)
if not ckpt or not os.path.exists(ckpt):
# try give user any artifact
alt = find_best_checkpoint("runs")
if not alt or not os.path.exists(alt):
raise gr.Error("Training finished, but checkpoint file was not found. See logs for details.")
ckpt = alt
yield "Training complete!", None, None, gr.File.update(value=ckpt, visible=True)
def upload_handler(model_file, hf_token, hf_repo, gh_token, gh_repo, progress=gr.Progress()):
if not model_file:
raise gr.Error("No trained model file available to upload. Train a model first.")
from huggingface_hub import HfApi, HfFolder
hf_status = "Skipped Hugging Face (credentials not provided)."
if hf_token and hf_repo:
progress(0, desc="Uploading to Hugging Face...")
try:
api = HfApi()
HfFolder.save_token(hf_token)
repo_url = api.create_repo(repo_id=hf_repo, exist_ok=True, token=hf_token)
api.upload_file(
path_or_fileobj=model_file.name,
path_in_repo=os.path.basename(model_file.name),
repo_id=hf_repo,
token=hf_token
)
hf_status = f"Success! Model at: {repo_url}"
except Exception as e:
hf_status = f"Hugging Face Error: {e}"
gh_status = "Skipped GitHub (credentials not provided)."
if gh_token and gh_repo:
progress(0.5, desc="Uploading to GitHub...")
try:
if '/' not in gh_repo:
raise ValueError("GitHub repo must be in the form 'username/repo'.")
username, repo_name = gh_repo.split('/')
api_url = f"https://api.github.com/repos/{username}/{repo_name}/contents/{os.path.basename(model_file.name)}"
headers = {"Authorization": f"token {gh_token}"}
with open(model_file.name, "rb") as f:
content = base64.b64encode(f.read()).decode()
get_resp = requests.get(api_url, headers=headers, timeout=30)
sha = get_resp.json().get('sha') if get_resp.ok else None
data = {"message": "Upload trained model from Rolo app", "content": content}
if sha:
data["sha"] = sha
put_resp = requests.put(api_url, headers=headers, json=data, timeout=60)
if put_resp.ok:
gh_status = f"Success! Model at: {put_resp.json()['content']['html_url']}"
else:
msg = put_resp.json().get('message', 'Unknown')
gh_status = f"GitHub Error: {msg}"
except Exception as e:
gh_status = f"GitHub Error: {e}"
progress(1)
return hf_status, gh_status
# ------------------------------
# Gradio UI
# ------------------------------
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as app:
gr.Markdown("# Rolo: RT-DETRv2 Training (Supervisely ecosystem only)")
dataset_info_state = gr.State([])
final_dataset_path_state = gr.State(None)
with gr.Tabs():
with gr.TabItem("1. Prepare Datasets"):
gr.Markdown("### Load Roboflow Datasets\nProvide your Roboflow API key and upload a `.txt` file containing one Roboflow dataset URL or `workspace/project[/vN]` per line.")
with gr.Row():
rf_api_key = gr.Textbox(label="Roboflow API Key (or set ROBOFLOW_API_KEY env)", type="password", scale=2)
rf_url_file = gr.File(label="Upload Roboflow URLs (.txt)", file_types=[".txt"], scale=1)
load_btn = gr.Button("Load Datasets", variant="primary")
dataset_status = gr.Textbox(label="Status", interactive=False)
with gr.TabItem("2. Manage & Merge"):
gr.Markdown("### Configure Classes and Finalize Dataset\nRename classes to merge them, set image limits, or remove them. Click **Update Counts** to preview, then **Finalize** to create the dataset.")
with gr.Row():
class_df = gr.DataFrame(
headers=["Original Name", "Rename To", "Max Images", "Remove"],
datatype=["str", "str", "number", "bool"],
label="Class Configuration", interactive=True, scale=3
)
with gr.Column(scale=1):
class_count_summary_df = gr.DataFrame(
label="Merged Class Counts Preview",
headers=["Final Class Name", "Est. Total Images"],
interactive=False
)
update_counts_btn = gr.Button("Update Counts")
finalize_btn = gr.Button("Finalize Merged Dataset", variant="primary")
finalize_status = gr.Textbox(label="Status", interactive=False)
with gr.TabItem("3. Configure & Train"):
gr.Markdown("### Set Hyperparameters and Train the RT-DETRv2 Model")
with gr.Row():
with gr.Column(scale=1):
model_file_dd = gr.Dropdown(
label="Model (only RT-DETRv2 from Supervisely)",
choices=[k for k, _ in MODEL_CHOICES],
value=DEFAULT_MODEL_KEY
)
model_hints = gr.Markdown(
"Choices: " +
", ".join([f"`{k}` ({label})" for k, label in MODEL_CHOICES])
)
run_name_tb = gr.Textbox(label="Run Name", value="rtdetrv2_run_1")
epochs_sl = gr.Slider(1, 500, 100, step=1, label="Epochs")
batch_sl = gr.Slider(1, 64, 16, step=1, label="Batch Size")
imgsz_num = gr.Number(label="Image Size", value=640)
lr_num = gr.Number(label="Learning Rate", value=0.001)
opt_dd = gr.Dropdown(["Adam", "AdamW", "SGD"], value="Adam", label="Optimizer")
train_btn = gr.Button("Start Training", variant="primary")
with gr.Column(scale=2):
train_status = gr.Textbox(label="Live Logs (tail)", interactive=False, lines=12)
loss_plot = gr.Plot(label="Loss")
map_plot = gr.Plot(label="mAP")
final_model_file = gr.File(label="Download Trained Model", interactive=False, visible=False)
with gr.TabItem("4. Upload Model"):
gr.Markdown("### Upload Your Trained Model")
with gr.Row():
with gr.Column():
gr.Markdown("#### Hugging Face")
hf_token = gr.Textbox(label="Hugging Face API Token", type="password")
hf_repo = gr.Textbox(label="Hugging Face Repo ID", placeholder="e.g., username/my-rtdetrv2-model")
with gr.Column():
gr.Markdown("#### GitHub")
gh_token = gr.Textbox(label="GitHub Personal Access Token", type="password")
gh_repo = gr.Textbox(label="GitHub Repo", placeholder="e.g., username/my-rtdetrv2-repo")
upload_btn = gr.Button("Upload Model", variant="primary")
with gr.Row():
hf_status = gr.Textbox(label="Hugging Face Status", interactive=False)
gh_status = gr.Textbox(label="GitHub Status", interactive=False)
# Wire UI handlers
load_btn.click(
fn=load_datasets_handler,
inputs=[rf_api_key, rf_url_file],
outputs=[dataset_status, dataset_info_state, class_df]
)
update_counts_btn.click(
fn=update_class_counts_handler,
inputs=[class_df, dataset_info_state],
outputs=[class_count_summary_df]
)
finalize_btn.click(
fn=finalize_handler,
inputs=[dataset_info_state, class_df],
outputs=[finalize_status, final_dataset_path_state]
)
train_btn.click(
fn=training_handler,
inputs=[final_dataset_path_state, model_file_dd, run_name_tb, epochs_sl, batch_sl, imgsz_num, lr_num, opt_dd],
outputs=[train_status, loss_plot, map_plot, final_model_file]
)
upload_btn.click(
fn=upload_handler,
inputs=[final_model_file, hf_token, hf_repo, gh_token, gh_repo],
outputs=[hf_status, gh_status]
)
if __name__ == "__main__":
# Silence Ultralytics warnings if present in the env (we don't use Ultralytics at all)
os.environ.setdefault("YOLO_CONFIG_DIR", "/tmp/Ultralytics")
app.launch(debug=True)
|