Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,249 Bytes
67b36a4 babd02b 67b36a4 00111a4 67b36a4 babd02b 67b36a4 d173683 67b36a4 d173683 67b36a4 00111a4 67b36a4 00111a4 67b36a4 00111a4 67b36a4 00111a4 67b36a4 00111a4 67b36a4 fd68401 babd02b 00111a4 67b36a4 babd02b 67b36a4 00111a4 67b36a4 d173683 67b36a4 fd68401 babd02b 67b36a4 babd02b 35fd22b 67b36a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os
import time
import glob
from typing import List
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
MODEL_ID = os.environ.get("SPARK_MODEL_ID", "internlm/Spark-VL-7B")
DTYPE = torch.bfloat16
_model = None
_processor = None
_attn_impl = None
def _load_model_and_processor():
global _model, _processor, _attn_impl
if _model is not None and _processor is not None:
return _model, _processor
# Prefer flash-attn if available, otherwise fall back to eager.
attn_impl = os.environ.get("ATTN_IMPL", "flash_attention_2")
try:
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
# `torch_dtype` was deprecated in Transformers; use `dtype` instead.
dtype=DTYPE,
attn_implementation=attn_impl,
device_map="auto",
)
_attn_impl = attn_impl
except (ImportError, ValueError, RuntimeError):
# Fallback for environments without flash-attn
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
# Use the new `dtype` kwarg for consistency with deprecations
dtype=DTYPE,
attn_implementation="eager",
device_map="auto",
)
_attn_impl = "eager"
processor = AutoProcessor.from_pretrained(MODEL_ID)
_model = model
_processor = processor
return _model, _processor
# Optionally preload the model at app startup so first click is fast.
# - On ZeroGPU, this will instantiate on CPU (no GPU at startup), so the
# first generate only needs to move tensors to CUDA.
# - You can disable by setting env `PRELOAD_MODEL=0`.
if os.environ.get("PRELOAD_MODEL", "1") not in ("0", "false", "False"):
try:
_load_model_and_processor()
print(f"[preload] Loaded {MODEL_ID} (attn_impl={_attn_impl})", flush=True)
except Exception as e:
# Don't block app if preload fails; fallback to lazy load on first call
print(f"[preload] Skipped due to: {type(e).__name__}: {e}", flush=True)
def _prepare_inputs(image, prompt):
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt},
],
}
]
chat_text = _processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = _processor(
text=[chat_text],
# Pass the single image directly; template contains <image> placeholder
images=[image] if image is not None else None,
return_tensors="pt",
)
return inputs
def _decode(generated_ids, input_ids):
# Trim the prompt part before decoding
trimmed = generated_ids[:, input_ids.shape[1] :]
out = _processor.batch_decode(
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return out[0].strip() if out else ""
@spaces.GPU(duration=120)
def generate(image, prompt, max_new_tokens, temperature, top_p, top_k):
if image is None:
return "Please upload an image."
prompt = (prompt or "").strip()
if not prompt:
return "Please enter a prompt."
start = time.time()
model, _ = _load_model_and_processor()
try:
# Ensure model resides on GPU during the call
dev = next(model.parameters()).device
if dev.type != "cuda":
model.to("cuda")
dev = torch.device("cuda")
except StopIteration:
dev = torch.device("cuda")
try:
inputs = _prepare_inputs(image, prompt)
inputs = {k: v.to(dev) if hasattr(v, "to") else v for k, v in inputs.items()}
gen_kwargs = {
"max_new_tokens": int(max_new_tokens),
"do_sample": True,
"temperature": float(temperature),
"top_p": float(top_p),
"top_k": int(top_k),
"use_cache": True,
}
with torch.inference_mode():
out_ids = model.generate(**inputs, **gen_kwargs)
text = _decode(out_ids, inputs["input_ids"])
took = time.time() - start
return f"{text}\n\n[attn={_attn_impl}, time={took:.1f}s]"
except Exception as e:
return f"Inference failed: {type(e).__name__}: {e}"
finally:
# Release GPU memory cache for ZeroGPU
try:
torch.cuda.empty_cache()
except Exception:
pass
def build_ui():
with gr.Blocks() as demo:
gr.Markdown(
"""
# Spark: Synergistic Policy And Reward Co-Evolving Framework
<h3 align="center">
π<a href="https://arxiv.org/abs/2509.22624">Paper</a>
| π€<a href="https://huggingface.co/internlm/Spark-VL-7B">Models</a>
| π€<a href="https://huggingface.co/datasets/internlm/Spark-Data">Datasets</a>
| π€<a href="https://huggingface.co/papers/2509.22624">Daily Paper</a>
</h3>
**π Introduction:** We propose SPARK, <strong>a unified framework that integrates policy and reward into a single model for joint and synchronous training</strong>. SPARK can automatically derive reward and reflection data from verifiable reward, enabling <strong>self-learning and self-evolution</strong>.
**π€ Models:** We release the checkpoints at [internlm/Spark-VL-7B](https://huggingface.co/internlm/Spark-VL-7B).
**π€ Datasets:** Training data is available at [internlm/Spark-Data](https://huggingface.co/datasets/internlm/Spark-Data).
**π» Training Code:** The training code and implementation details can be found at [InternLM/Spark](https://github.com/InternLM/Spark).
---
πΈ **Upload an image and enter a prompt** or πΌοΈ **choose the input from the example gallery** (image + prompt).
"""
)
# Build an image+prompt gallery from ./examples
# Each example is an image file with an optional sidecar .txt containing the prompt.
# If a .txt is present (same basename), we will display a caption and load the
# prompt alongside the image when the thumbnail is selected.
def _gather_examples() -> List[tuple]:
pairs = [] # (image_path, prompt_text)
imgs = []
for ext in ("jpg", "jpeg", "png", "webp"):
imgs.extend(glob.glob(os.path.join("examples", f"*.{ext}")))
# Deduplicate while keeping order
for img_path in list(dict.fromkeys(sorted(imgs))):
stem, _ = os.path.splitext(img_path)
prompt_path = stem + ".txt"
prompt_text = None
if os.path.exists(prompt_path):
try:
with open(prompt_path, "r", encoding="utf-8") as fh:
prompt_text = fh.read().strip()
except Exception:
prompt_text = None
pairs.append((img_path, prompt_text))
return pairs
example_pairs = _gather_examples()
# Load default image if exists
default_path = os.path.join("examples", "example_0.png")
default_image = Image.open(default_path) if os.path.exists(default_path) else None
with gr.Row():
with gr.Column(scale=1):
image = gr.Image(type="pil", label="Image", value=default_image)
with gr.Column(scale=1):
prompt = gr.Textbox(
label="Prompt",
value=(
"As seen in the diagram, three darts are thrown at nine fixed balloons. "
"If a balloon is hit it will burst and the dart continues in the same direction "
"it had beforehand. How many balloons will not be hit by a dart?"
),
lines=4,
)
max_new_tokens = gr.Slider(512, 4096, value=1024, step=8, label="max_new_tokens")
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="top_p")
top_k = gr.Slider(1, 200, value=50, step=1, label="top_k")
run = gr.Button("Generate")
# Clear prompt when image is removed
image.clear(fn=lambda: "", outputs=prompt)
# Examples section: table-like layout with image and prompt columns
gr.Markdown("## Examples")
# Handler for clicking on example images
def _on_example_click(img_path, prompt_text):
try:
img_val = Image.open(img_path)
except Exception:
img_val = None
return img_val, prompt_text
# Categorize examples by type
math_examples = []
reward_examples = []
other_examples = []
for img_path, prompt_text in example_pairs:
basename = os.path.basename(img_path)
if basename.startswith("example_0"):
math_examples.append((img_path, prompt_text))
elif basename.startswith("example_1"):
reward_examples.append((img_path, prompt_text))
else:
other_examples.append((img_path, prompt_text))
# Display math reasoning examples
if math_examples:
gr.Markdown("### π Math Reasoning Examples")
for idx, (img_path, prompt_text) in enumerate(math_examples):
with gr.Row():
with gr.Column(scale=1):
ex_img = gr.Image(
value=img_path,
type="filepath",
label=f"Math Example {idx}",
interactive=False,
show_label=True,
height=200,
)
# Wire click event to load the example
ex_img.select(
fn=lambda ip=img_path, pt=prompt_text: _on_example_click(ip, pt),
outputs=[image, prompt],
)
with gr.Column(scale=3):
ex_text = gr.Textbox(
value=prompt_text or "",
label="Prompt",
lines=8,
max_lines=8,
interactive=False,
show_label=True,
)
# Display reward model examples
if reward_examples:
gr.Markdown("### π― Reward Model Examples")
for idx, (img_path, prompt_text) in enumerate(reward_examples):
with gr.Row():
with gr.Column(scale=1):
ex_img = gr.Image(
value=img_path,
type="filepath",
label=f"Reward Example {idx}",
interactive=False,
show_label=True,
height=200,
)
# Wire click event to load the example
ex_img.select(
fn=lambda ip=img_path, pt=prompt_text: _on_example_click(ip, pt),
outputs=[image, prompt],
)
with gr.Column(scale=3):
ex_text = gr.Textbox(
value=prompt_text or "",
label="Prompt",
lines=8,
max_lines=8,
interactive=False,
show_label=True,
)
# Display other examples if any
if other_examples:
gr.Markdown("### π Other Examples")
for idx, (img_path, prompt_text) in enumerate(other_examples):
with gr.Row():
with gr.Column(scale=1):
ex_img = gr.Image(
value=img_path,
type="filepath",
label=f"Example {idx}",
interactive=False,
show_label=True,
height=200,
)
# Wire click event to load the example
ex_img.select(
fn=lambda ip=img_path, pt=prompt_text: _on_example_click(ip, pt),
outputs=[image, prompt],
)
with gr.Column(scale=3):
ex_text = gr.Textbox(
value=prompt_text or "",
label="Prompt",
lines=8,
max_lines=8,
interactive=False,
show_label=True,
)
output = gr.Textbox(label="Model Output", lines=8)
run.click(
fn=generate,
inputs=[image, prompt, max_new_tokens, temperature, top_p, top_k],
outputs=output,
show_progress=True,
)
# Citation section at the bottom
gr.Markdown(
"""
---
If you find this project useful, please kindly cite:
```bibtex
@article{liu2025spark,
title={SPARK: Synergistic Policy And Reward Co-Evolving Framework},
author={Liu, Ziyu and Zang, Yuhang and Ding, Shengyuan and Cao, Yuhang and Dong, Xiaoyi and Duan, Haodong and Lin, Dahua and Wang, Jiaqi},
journal={arXiv preprint arXiv:2509.22624},
year={2025}
}
```
"""
)
demo.queue(max_size=10).launch()
return demo
if __name__ == "__main__":
build_ui()
|