Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
|
@@ -76,97 +76,88 @@ def segment_with_boxs(
|
|
| 76 |
use_retina=True,
|
| 77 |
mask_random_color=True,
|
| 78 |
):
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
scaled_point_label = np.array(global_point_label)[:2]
|
| 101 |
-
|
| 102 |
-
print(scaled_points, scaled_points is not None)
|
| 103 |
-
print(scaled_point_label, scaled_point_label is not None)
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
return image
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
|
|
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
pts_sampled = pts_sampled[:, :, :2, :]
|
| 115 |
-
pts_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2])
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
)
|
| 122 |
-
predicted_logits = predicted_logits.cpu()
|
| 123 |
-
all_masks = torch.ge(
|
| 124 |
-
torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5
|
| 125 |
-
).numpy()
|
| 126 |
-
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
| 127 |
-
|
| 128 |
-
max_predicted_iou = -1
|
| 129 |
-
selected_mask_using_predicted_iou = None
|
| 130 |
-
selected_predicted_iou = None
|
| 131 |
-
|
| 132 |
-
for m in range(all_masks.shape[0]):
|
| 133 |
-
curr_predicted_iou = predicted_iou[m]
|
| 134 |
-
if (
|
| 135 |
-
curr_predicted_iou > max_predicted_iou
|
| 136 |
-
or selected_mask_using_predicted_iou is None
|
| 137 |
-
):
|
| 138 |
-
max_predicted_iou = curr_predicted_iou
|
| 139 |
-
selected_mask_using_predicted_iou = all_masks[m : m + 1]
|
| 140 |
-
selected_predicted_iou = predicted_iou[m : m + 1]
|
| 141 |
-
|
| 142 |
-
results = format_results(
|
| 143 |
-
selected_mask_using_predicted_iou,
|
| 144 |
-
selected_predicted_iou,
|
| 145 |
-
predicted_logits,
|
| 146 |
-
0,
|
| 147 |
-
)
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
except:
|
| 169 |
-
return image
|
| 170 |
|
| 171 |
|
| 172 |
def segment_with_points(
|
|
@@ -177,82 +168,77 @@ def segment_with_points(
|
|
| 177 |
use_retina=True,
|
| 178 |
mask_random_color=True,
|
| 179 |
):
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
global global_point_label
|
| 183 |
-
|
| 184 |
-
print("Original Image : ", image.size)
|
| 185 |
-
|
| 186 |
-
input_size = int(input_size)
|
| 187 |
-
w, h = image.size
|
| 188 |
-
scale = input_size / max(w, h)
|
| 189 |
-
new_w = int(w * scale)
|
| 190 |
-
new_h = int(h * scale)
|
| 191 |
-
image = image.resize((new_w, new_h))
|
| 192 |
-
|
| 193 |
-
print("Scaled Image : ", image.size)
|
| 194 |
-
print("Scale : ", scale)
|
| 195 |
-
|
| 196 |
-
if global_points is None:
|
| 197 |
-
return image
|
| 198 |
-
if len(global_points) < 1:
|
| 199 |
-
return image
|
| 200 |
-
scaled_points = np.array(
|
| 201 |
-
[[int(x * scale) for x in point] for point in global_points]
|
| 202 |
-
)
|
| 203 |
-
scaled_point_label = np.array(global_point_label)
|
| 204 |
|
| 205 |
-
|
| 206 |
-
print(scaled_point_label, scaled_point_label is not None)
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
pts_sampled.to(device),
|
| 222 |
-
pts_labels.to(device),
|
| 223 |
-
)
|
| 224 |
-
predicted_logits = predicted_logits.cpu()
|
| 225 |
-
all_masks = torch.ge(
|
| 226 |
-
torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5
|
| 227 |
-
).numpy()
|
| 228 |
-
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
| 229 |
|
| 230 |
-
|
|
|
|
|
|
|
| 231 |
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
)
|
| 235 |
-
annotations = np.array([annotations])
|
| 236 |
-
|
| 237 |
-
fig = fast_process(
|
| 238 |
-
annotations=annotations,
|
| 239 |
-
image=image,
|
| 240 |
-
device=device,
|
| 241 |
-
scale=(1024 // input_size),
|
| 242 |
-
better_quality=better_quality,
|
| 243 |
-
mask_random_color=mask_random_color,
|
| 244 |
-
points=scaled_points,
|
| 245 |
-
bbox=None,
|
| 246 |
-
use_retina=use_retina,
|
| 247 |
-
withContours=withContours,
|
| 248 |
-
)
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
|
| 258 |
def get_points_with_draw(image, cond_image, evt: gr.SelectData):
|
|
@@ -276,16 +262,12 @@ def get_points_with_draw(image, cond_image, evt: gr.SelectData):
|
|
| 276 |
draw = ImageDraw.Draw(image)
|
| 277 |
|
| 278 |
draw.ellipse(
|
| 279 |
-
[
|
| 280 |
-
(x - point_radius, y - point_radius),
|
| 281 |
-
(x + point_radius, y + point_radius),
|
| 282 |
-
],
|
| 283 |
fill=point_color,
|
| 284 |
)
|
| 285 |
|
| 286 |
return image
|
| 287 |
|
| 288 |
-
|
| 289 |
def get_points_with_draw_(image, cond_image, evt: gr.SelectData):
|
| 290 |
global global_points
|
| 291 |
global global_point_label
|
|
@@ -309,10 +291,7 @@ def get_points_with_draw_(image, cond_image, evt: gr.SelectData):
|
|
| 309 |
draw = ImageDraw.Draw(image)
|
| 310 |
|
| 311 |
draw.ellipse(
|
| 312 |
-
[
|
| 313 |
-
(x - point_radius, y - point_radius),
|
| 314 |
-
(x + point_radius, y + point_radius),
|
| 315 |
-
],
|
| 316 |
fill=point_color,
|
| 317 |
)
|
| 318 |
|
|
@@ -411,6 +390,7 @@ with gr.Blocks(css=css, title="Efficient SAM") as demo:
|
|
| 411 |
gr.Examples(
|
| 412 |
examples=examples,
|
| 413 |
inputs=[cond_img_b],
|
|
|
|
| 414 |
examples_per_page=4,
|
| 415 |
)
|
| 416 |
|
|
@@ -422,7 +402,9 @@ with gr.Blocks(css=css, title="Efficient SAM") as demo:
|
|
| 422 |
|
| 423 |
cond_img_b.select(get_points_with_draw_, [segm_img_b, cond_img_b], segm_img_b)
|
| 424 |
|
| 425 |
-
segment_btn_p.click(
|
|
|
|
|
|
|
| 426 |
|
| 427 |
segment_btn_b.click(
|
| 428 |
segment_with_boxs, inputs=[cond_img_b, segm_img_b], outputs=segm_img_b
|
|
|
|
| 76 |
use_retina=True,
|
| 77 |
mask_random_color=True,
|
| 78 |
):
|
| 79 |
+
global global_points
|
| 80 |
+
global global_point_label
|
| 81 |
+
if len(global_points) < 2:
|
| 82 |
+
return seg_image
|
| 83 |
+
print("Original Image : ", image.size)
|
| 84 |
+
|
| 85 |
+
input_size = int(input_size)
|
| 86 |
+
w, h = image.size
|
| 87 |
+
scale = input_size / max(w, h)
|
| 88 |
+
new_w = int(w * scale)
|
| 89 |
+
new_h = int(h * scale)
|
| 90 |
+
image = image.resize((new_w, new_h))
|
| 91 |
+
|
| 92 |
+
print("Scaled Image : ", image.size)
|
| 93 |
+
print("Scale : ", scale)
|
| 94 |
+
|
| 95 |
+
scaled_points = np.array(
|
| 96 |
+
[[int(x * scale) for x in point] for point in global_points]
|
| 97 |
+
)
|
| 98 |
+
scaled_points = scaled_points[:2]
|
| 99 |
+
scaled_point_label = np.array(global_point_label)[:2]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
+
print(scaled_points, scaled_points is not None)
|
| 102 |
+
print(scaled_point_label, scaled_point_label is not None)
|
|
|
|
| 103 |
|
| 104 |
+
if scaled_points.size == 0 and scaled_point_label.size == 0:
|
| 105 |
+
print("No points selected")
|
| 106 |
+
return image
|
| 107 |
|
| 108 |
+
nd_image = np.array(image)
|
| 109 |
+
img_tensor = ToTensor()(nd_image)
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
print(img_tensor.shape)
|
| 112 |
+
pts_sampled = torch.reshape(torch.tensor(scaled_points), [1, 1, -1, 2])
|
| 113 |
+
pts_sampled = pts_sampled[:, :, :2, :]
|
| 114 |
+
pts_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
predicted_logits, predicted_iou = model(
|
| 117 |
+
img_tensor[None, ...].to(device),
|
| 118 |
+
pts_sampled.to(device),
|
| 119 |
+
pts_labels.to(device),
|
| 120 |
+
)
|
| 121 |
+
predicted_logits = predicted_logits.cpu()
|
| 122 |
+
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
|
| 123 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
max_predicted_iou = -1
|
| 127 |
+
selected_mask_using_predicted_iou = None
|
| 128 |
+
selected_predicted_iou = None
|
| 129 |
+
|
| 130 |
+
for m in range(all_masks.shape[0]):
|
| 131 |
+
curr_predicted_iou = predicted_iou[m]
|
| 132 |
+
if (
|
| 133 |
+
curr_predicted_iou > max_predicted_iou
|
| 134 |
+
or selected_mask_using_predicted_iou is None
|
| 135 |
+
):
|
| 136 |
+
max_predicted_iou = curr_predicted_iou
|
| 137 |
+
selected_mask_using_predicted_iou = all_masks[m:m+1]
|
| 138 |
+
selected_predicted_iou = predicted_iou[m:m+1]
|
| 139 |
+
|
| 140 |
+
results = format_results(selected_mask_using_predicted_iou, selected_predicted_iou, predicted_logits, 0)
|
| 141 |
+
|
| 142 |
+
annotations = results[0]["segmentation"]
|
| 143 |
+
annotations = np.array([annotations])
|
| 144 |
+
print(scaled_points.shape)
|
| 145 |
+
fig = fast_process(
|
| 146 |
+
annotations=annotations,
|
| 147 |
+
image=image,
|
| 148 |
+
device=device,
|
| 149 |
+
scale=(1024 // input_size),
|
| 150 |
+
better_quality=better_quality,
|
| 151 |
+
mask_random_color=mask_random_color,
|
| 152 |
+
use_retina=use_retina,
|
| 153 |
+
bbox = scaled_points.reshape([4]),
|
| 154 |
+
withContours=withContours,
|
| 155 |
+
)
|
| 156 |
|
| 157 |
+
global_points = []
|
| 158 |
+
global_point_label = []
|
| 159 |
+
# return fig, None
|
| 160 |
+
return fig
|
|
|
|
|
|
|
| 161 |
|
| 162 |
|
| 163 |
def segment_with_points(
|
|
|
|
| 168 |
use_retina=True,
|
| 169 |
mask_random_color=True,
|
| 170 |
):
|
| 171 |
+
global global_points
|
| 172 |
+
global global_point_label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
+
print("Original Image : ", image.size)
|
|
|
|
| 175 |
|
| 176 |
+
input_size = int(input_size)
|
| 177 |
+
w, h = image.size
|
| 178 |
+
scale = input_size / max(w, h)
|
| 179 |
+
new_w = int(w * scale)
|
| 180 |
+
new_h = int(h * scale)
|
| 181 |
+
image = image.resize((new_w, new_h))
|
| 182 |
|
| 183 |
+
print("Scaled Image : ", image.size)
|
| 184 |
+
print("Scale : ", scale)
|
| 185 |
|
| 186 |
+
if global_points is None:
|
| 187 |
+
return image
|
| 188 |
+
if len(global_points) < 1:
|
| 189 |
+
return image
|
| 190 |
+
scaled_points = np.array(
|
| 191 |
+
[[int(x * scale) for x in point] for point in global_points]
|
| 192 |
+
)
|
| 193 |
+
scaled_point_label = np.array(global_point_label)
|
| 194 |
|
| 195 |
+
print(scaled_points, scaled_points is not None)
|
| 196 |
+
print(scaled_point_label, scaled_point_label is not None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
+
if scaled_points.size == 0 and scaled_point_label.size == 0:
|
| 199 |
+
print("No points selected")
|
| 200 |
+
return image
|
| 201 |
|
| 202 |
+
nd_image = np.array(image)
|
| 203 |
+
img_tensor = ToTensor()(nd_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
+
print(img_tensor.shape)
|
| 206 |
+
pts_sampled = torch.reshape(torch.tensor(scaled_points), [1, 1, -1, 2])
|
| 207 |
+
pts_labels = torch.reshape(torch.tensor(global_point_label), [1, 1, -1])
|
| 208 |
+
|
| 209 |
+
predicted_logits, predicted_iou = model(
|
| 210 |
+
img_tensor[None, ...].to(device),
|
| 211 |
+
pts_sampled.to(device),
|
| 212 |
+
pts_labels.to(device),
|
| 213 |
+
)
|
| 214 |
+
predicted_logits = predicted_logits.cpu()
|
| 215 |
+
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
|
| 216 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
| 217 |
+
|
| 218 |
+
results = format_results(all_masks, predicted_iou, predicted_logits, 0)
|
| 219 |
+
|
| 220 |
+
annotations, _ = point_prompt(
|
| 221 |
+
results, scaled_points, scaled_point_label, new_h, new_w
|
| 222 |
+
)
|
| 223 |
+
annotations = np.array([annotations])
|
| 224 |
+
|
| 225 |
+
fig = fast_process(
|
| 226 |
+
annotations=annotations,
|
| 227 |
+
image=image,
|
| 228 |
+
device=device,
|
| 229 |
+
scale=(1024 // input_size),
|
| 230 |
+
better_quality=better_quality,
|
| 231 |
+
mask_random_color=mask_random_color,
|
| 232 |
+
points = scaled_points,
|
| 233 |
+
bbox=None,
|
| 234 |
+
use_retina=use_retina,
|
| 235 |
+
withContours=withContours,
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
global_points = []
|
| 239 |
+
global_point_label = []
|
| 240 |
+
# return fig, None
|
| 241 |
+
return fig
|
| 242 |
|
| 243 |
|
| 244 |
def get_points_with_draw(image, cond_image, evt: gr.SelectData):
|
|
|
|
| 262 |
draw = ImageDraw.Draw(image)
|
| 263 |
|
| 264 |
draw.ellipse(
|
| 265 |
+
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
|
|
|
|
|
|
|
|
|
|
| 266 |
fill=point_color,
|
| 267 |
)
|
| 268 |
|
| 269 |
return image
|
| 270 |
|
|
|
|
| 271 |
def get_points_with_draw_(image, cond_image, evt: gr.SelectData):
|
| 272 |
global global_points
|
| 273 |
global global_point_label
|
|
|
|
| 291 |
draw = ImageDraw.Draw(image)
|
| 292 |
|
| 293 |
draw.ellipse(
|
| 294 |
+
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
|
|
|
|
|
|
|
|
|
|
| 295 |
fill=point_color,
|
| 296 |
)
|
| 297 |
|
|
|
|
| 390 |
gr.Examples(
|
| 391 |
examples=examples,
|
| 392 |
inputs=[cond_img_b],
|
| 393 |
+
|
| 394 |
examples_per_page=4,
|
| 395 |
)
|
| 396 |
|
|
|
|
| 402 |
|
| 403 |
cond_img_b.select(get_points_with_draw_, [segm_img_b, cond_img_b], segm_img_b)
|
| 404 |
|
| 405 |
+
segment_btn_p.click(
|
| 406 |
+
segment_with_points, inputs=[cond_img_p], outputs=segm_img_p
|
| 407 |
+
)
|
| 408 |
|
| 409 |
segment_btn_b.click(
|
| 410 |
segment_with_boxs, inputs=[cond_img_b, segm_img_b], outputs=segm_img_b
|