| # typescript-chunks LoRA Models | |
| This repository contains LoRA (Low-Rank Adaptation) models trained on the typescript-chunks dataset. | |
| ## Models in this repository: | |
| - `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123 | |
| - `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123 | |
| - `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123 | |
| - `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123 | |
| - `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123 | |
| - `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123 | |
| - `llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_typescript-chunks_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123 | |
| ## Usage | |
| To use these LoRA models, you'll need the `peft` library: | |
| ```bash | |
| pip install peft transformers torch | |
| ``` | |
| Example usage: | |
| ```python | |
| from peft import PeftModel | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| # Load base model | |
| base_model_name = "your-base-model" # Replace with actual base model | |
| model = AutoModelForCausalLM.from_pretrained(base_model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_name) | |
| # Load LoRA adapter | |
| model = PeftModel.from_pretrained( | |
| model, | |
| "supergoose/typescript-chunks", | |
| subfolder="model_name_here" # Replace with specific model folder | |
| ) | |
| # Use the model | |
| inputs = tokenizer("Your prompt here", return_tensors="pt") | |
| outputs = model.generate(**inputs) | |
| ``` | |
| ## Training Details | |
| - Dataset: typescript-chunks | |
| - Training framework: LoRA/PEFT | |
| - Models included: 7 variants | |
| ## Files Structure | |
| Each model folder contains: | |
| - `adapter_config.json`: LoRA configuration | |
| - `adapter_model.safetensors`: LoRA weights | |
| - `tokenizer.json`: Tokenizer configuration | |
| - Additional training artifacts | |
| --- | |
| *Generated automatically by LoRA uploader script* | |