SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-adaptive-layer")
# Run inference
sentences = [
'Introduction',
'Analytical Perspectives.',
'A man reads the paper.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8456 |
| spearman_cosine | 0.8486 |
| pearson_manhattan | 0.8475 |
| spearman_manhattan | 0.8506 |
| pearson_euclidean | 0.8495 |
| spearman_euclidean | 0.8527 |
| pearson_dot | 0.7867 |
| spearman_dot | 0.7816 |
| pearson_max | 0.8495 |
| spearman_max | 0.8527 |
Semantic Similarity
- Dataset:
sts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8183 |
| spearman_cosine | 0.8148 |
| pearson_manhattan | 0.8132 |
| spearman_manhattan | 0.8088 |
| pearson_euclidean | 0.8148 |
| spearman_euclidean | 0.8105 |
| pearson_dot | 0.75 |
| spearman_dot | 0.735 |
| pearson_max | 0.8183 |
| spearman_max | 0.8148 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at e587f0c
- Size: 557,850 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk. - Loss:
AdaptiveLayerLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3 }
Evaluation Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at e587f0c
- Size: 6,584 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 18.02 tokens
- max: 66 tokens
- min: 5 tokens
- mean: 9.81 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.37 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.Two woman are holding packages.The men are fighting outside a deli.Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.Two kids in numbered jerseys wash their hands.Two kids in jackets walk to school.A man selling donuts to a customer during a world exhibition event held in the city of AngelesA man selling donuts to a customer.A woman drinks her coffee in a small cafe. - Loss:
AdaptiveLayerLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128num_train_epochs: 1warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Falseper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Nonedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| 0.0229 | 100 | 7.0517 | 3.9378 | 0.7889 | - |
| 0.0459 | 200 | 4.4877 | 3.8105 | 0.7906 | - |
| 0.0688 | 300 | 4.0315 | 3.6401 | 0.7966 | - |
| 0.0918 | 400 | 3.822 | 3.3537 | 0.7883 | - |
| 0.1147 | 500 | 3.0608 | 2.5975 | 0.7973 | - |
| 0.1376 | 600 | 2.6304 | 2.3956 | 0.7943 | - |
| 0.1606 | 700 | 2.7723 | 2.0379 | 0.8009 | - |
| 0.1835 | 800 | 2.3556 | 1.9645 | 0.7984 | - |
| 0.2065 | 900 | 2.4998 | 1.9086 | 0.8017 | - |
| 0.2294 | 1000 | 2.1834 | 1.8400 | 0.7973 | - |
| 0.2524 | 1100 | 2.2793 | 1.5831 | 0.8102 | - |
| 0.2753 | 1200 | 2.1042 | 1.6485 | 0.8004 | - |
| 0.2982 | 1300 | 2.1365 | 1.7084 | 0.8013 | - |
| 0.3212 | 1400 | 2.0096 | 1.5520 | 0.8064 | - |
| 0.3441 | 1500 | 2.0492 | 1.4917 | 0.8084 | - |
| 0.3671 | 1600 | 1.8764 | 1.5447 | 0.8018 | - |
| 0.3900 | 1700 | 1.8611 | 1.5480 | 0.8046 | - |
| 0.4129 | 1800 | 1.972 | 1.5353 | 0.8075 | - |
| 0.4359 | 1900 | 1.8062 | 1.4633 | 0.8039 | - |
| 0.4588 | 2000 | 1.8565 | 1.4213 | 0.8027 | - |
| 0.4818 | 2100 | 1.8852 | 1.3860 | 0.8002 | - |
| 0.5047 | 2200 | 1.7939 | 1.5468 | 0.7910 | - |
| 0.5276 | 2300 | 1.7398 | 1.6041 | 0.7888 | - |
| 0.5506 | 2400 | 1.8535 | 1.5791 | 0.7949 | - |
| 0.5735 | 2500 | 1.8486 | 1.4871 | 0.7951 | - |
| 0.5965 | 2600 | 1.7379 | 1.5427 | 0.8019 | - |
| 0.6194 | 2700 | 1.7325 | 1.4585 | 0.8087 | - |
| 0.6423 | 2800 | 1.7664 | 1.5264 | 0.7965 | - |
| 0.6653 | 2900 | 1.7517 | 1.6344 | 0.7930 | - |
| 0.6882 | 3000 | 1.8329 | 1.4947 | 0.8008 | - |
| 0.7112 | 3100 | 1.7206 | 1.4917 | 0.8089 | - |
| 0.7341 | 3200 | 1.7138 | 1.4185 | 0.8065 | - |
| 0.7571 | 3300 | 1.3705 | 1.2040 | 0.8446 | - |
| 0.7800 | 3400 | 1.1289 | 1.1363 | 0.8447 | - |
| 0.8029 | 3500 | 1.0174 | 1.1049 | 0.8464 | - |
| 0.8259 | 3600 | 1.0188 | 1.0362 | 0.8466 | - |
| 0.8488 | 3700 | 0.9841 | 1.1391 | 0.8470 | - |
| 0.8718 | 3800 | 0.8466 | 1.0116 | 0.8485 | - |
| 0.8947 | 3900 | 0.9268 | 1.1323 | 0.8488 | - |
| 0.9176 | 4000 | 0.8686 | 1.0296 | 0.8495 | - |
| 0.9406 | 4100 | 0.9255 | 1.1737 | 0.8484 | - |
| 0.9635 | 4200 | 0.7991 | 1.0609 | 0.8486 | - |
| 0.9865 | 4300 | 0.8431 | 0.9976 | 0.8486 | - |
| 1.0 | 4359 | - | - | - | 0.8148 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.244 kWh
- Carbon Emitted: 0.095 kg of CO2
- Hours Used: 0.849 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AdaptiveLayerLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Model tree for tomaarsen/distilroberta-base-nli-adaptive-layer
Base model
distilbert/distilroberta-baseEvaluation results
- Pearson Cosine on sts devself-reported0.846
- Spearman Cosine on sts devself-reported0.849
- Pearson Manhattan on sts devself-reported0.848
- Spearman Manhattan on sts devself-reported0.851
- Pearson Euclidean on sts devself-reported0.849
- Spearman Euclidean on sts devself-reported0.853
- Pearson Dot on sts devself-reported0.787
- Spearman Dot on sts devself-reported0.782
- Pearson Max on sts devself-reported0.849
- Spearman Max on sts devself-reported0.853