Command-R 35B โ SFT (Supervised Fine-Tuning on Synthetic QA)
Model type: Causal Language Model
Base model: CohereLabs/c4ai-command-r-v01
License: Apache 2.0
Framework: Axolotl
Overview
commandr-35b-sft is a supervised fine-tuned variant of Cohereโs Command-R 35B model.
Fine-tuning was performed on a high-quality instruction-following dataset using LoRA adapters, enabling improved conversational reasoning and question answering.
Training was conducted on the Leonardo EuroHPC system.
Training Setup
Objective: Supervised fine-tuning (instruction following)
Adapter type: LoRA
Precision: bfloat16
Hardware: 8 nodes ร 2 ร NVIDIA A100 64GB GPUs
Framework: DeepSpeed ZeRO-1, Axolotl, PyTorch 2.5.1+cu121
Runtime: ~6 hours
Dataset split: 70% train / 30% validation
Dataset
Name: axolotl_deduplicated_synthetic_qa.jsonl
Type: Instruction-following synthetic QA dataset
Each sample follows a QA/chat format used in the alpaca_chat.load_qa schema.
Hyperparameters
| Parameter | Value |
|---|---|
| Sequence length | 2048 |
| Micro batch size | 1 |
| Gradient accumulation | 2 |
| Epochs | 1 |
| Learning rate | 0.0001 |
| LR scheduler | cosine |
| Optimizer | AdamW (8-bit) |
| Warmup steps | 20 |
| Weight decay | 0.0 |
| LoRA rank (r) | 16 |
| LoRA alpha | 32 |
| LoRA dropout | 0.05 |
| LoRA target modules | q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj |
| Gradient checkpointing | โ |
| Flash attention | โ |
| Auto resume | โ |
| Loss watchdog threshold | 8.0 |
| Loss watchdog patience | 20 |
Tokenizer
Tokenizer type: AutoTokenizer
Special token: <|end_of_text|> as pad_token
- Downloads last month
- 40
Model tree for ubitech-edg/commandr-35b-sft
Base model
CohereLabs/c4ai-command-r-v01