Qwen2.5-32B-Base
This model is a fine-tuned version of Qwen/Qwen2.5-32B on the QA_train_data dataset. It achieves the following results on the evaluation set:
- Loss: 0.9999
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
 - train_batch_size: 1
 - eval_batch_size: 1
 - seed: 42
 - distributed_type: multi-GPU
 - num_devices: 16
 - gradient_accumulation_steps: 2
 - total_train_batch_size: 32
 - total_eval_batch_size: 16
 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: cosine
 - lr_scheduler_warmup_ratio: 0.1
 - num_epochs: 3.0
 
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 0.9373 | 0.1778 | 100 | 0.9672 | 
| 0.9671 | 0.3556 | 200 | 0.9639 | 
| 0.9584 | 0.5333 | 300 | 0.9629 | 
| 0.957 | 0.7111 | 400 | 0.9597 | 
| 0.9477 | 0.8889 | 500 | 0.9587 | 
| 0.8552 | 1.0667 | 600 | 0.9710 | 
| 0.7944 | 1.2444 | 700 | 0.9722 | 
| 0.7359 | 1.4222 | 800 | 0.9709 | 
| 0.8494 | 1.6 | 900 | 0.9662 | 
| 0.8163 | 1.7778 | 1000 | 0.9663 | 
| 0.8041 | 1.9556 | 1100 | 0.9639 | 
| 0.6291 | 2.1333 | 1200 | 0.9990 | 
| 0.6122 | 2.3111 | 1300 | 1.0004 | 
| 0.6718 | 2.4889 | 1400 | 1.0003 | 
| 0.6712 | 2.6667 | 1500 | 1.0002 | 
| 0.6397 | 2.8444 | 1600 | 0.9996 | 
Framework versions
- Transformers 4.46.1
 - Pytorch 2.5.1+cu124
 - Datasets 2.21.0
 - Tokenizers 0.20.3
 
- Downloads last month
 - 1
 
Model tree for w3en2g/qa-Qwen2.5-32B-Base
Base model
Qwen/Qwen2.5-32B