Qwen2.5-7B-Instruct
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the self_ask_train_data dataset. It achieves the following results on the evaluation set:
- Loss: 0.8082
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
 - train_batch_size: 1
 - eval_batch_size: 1
 - seed: 42
 - distributed_type: multi-GPU
 - num_devices: 8
 - gradient_accumulation_steps: 2
 - total_train_batch_size: 16
 - total_eval_batch_size: 8
 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: cosine
 - lr_scheduler_warmup_ratio: 0.1
 - num_epochs: 3.0
 
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 0.8711 | 0.0889 | 100 | 0.8548 | 
| 0.8052 | 0.1778 | 200 | 0.8143 | 
| 0.8071 | 0.2667 | 300 | 0.8015 | 
| 0.7912 | 0.3556 | 400 | 0.7962 | 
| 0.8086 | 0.4444 | 500 | 0.7914 | 
| 0.7614 | 0.5333 | 600 | 0.7859 | 
| 0.7758 | 0.6222 | 700 | 0.7828 | 
| 0.8026 | 0.7111 | 800 | 0.7794 | 
| 0.8 | 0.8 | 900 | 0.7757 | 
| 0.7568 | 0.8889 | 1000 | 0.7740 | 
| 0.7954 | 0.9778 | 1100 | 0.7712 | 
| 0.6518 | 1.0667 | 1200 | 0.7852 | 
| 0.6344 | 1.1556 | 1300 | 0.7862 | 
| 0.6181 | 1.2444 | 1400 | 0.7869 | 
| 0.6511 | 1.3333 | 1500 | 0.7798 | 
| 0.6341 | 1.4222 | 1600 | 0.7812 | 
| 0.6537 | 1.5111 | 1700 | 0.7794 | 
| 0.6626 | 1.6 | 1800 | 0.7780 | 
| 0.6116 | 1.6889 | 1900 | 0.7766 | 
| 0.6327 | 1.7778 | 2000 | 0.7731 | 
| 0.6168 | 1.8667 | 2100 | 0.7714 | 
| 0.6354 | 1.9556 | 2200 | 0.7699 | 
| 0.5238 | 2.0444 | 2300 | 0.8105 | 
| 0.4994 | 2.1333 | 2400 | 0.8090 | 
| 0.481 | 2.2222 | 2500 | 0.8098 | 
| 0.4976 | 2.3111 | 2600 | 0.8098 | 
| 0.5061 | 2.4 | 2700 | 0.8085 | 
| 0.5184 | 2.4889 | 2800 | 0.8096 | 
| 0.5024 | 2.5778 | 2900 | 0.8094 | 
| 0.5086 | 2.6667 | 3000 | 0.8081 | 
| 0.5008 | 2.7556 | 3100 | 0.8081 | 
| 0.5021 | 2.8444 | 3200 | 0.8082 | 
| 0.4808 | 2.9333 | 3300 | 0.8082 | 
Framework versions
- Transformers 4.46.1
 - Pytorch 2.5.1+cu124
 - Datasets 2.21.0
 - Tokenizers 0.20.3
 
- Downloads last month
 - 2