This is the reproduction of karpathy's nanochat on AMD Hardware.
nanochat training report
Environment
Hardware
- Platform: Linux
- CPUs: 160 cores (160 logical)
- Memory: 1889.8 GB
- GPUs: 8x AMD Instinct MI300X VF
- GPU Memory: 1533.5 GB total
- CUDA Version: unknown
- Hourly Rate: $16.00/hour
Software
- Python: 3.12.3
- PyTorch: 2.10.0.dev20251028+rocm7.0
Tokenizer training
timestamp: 2025-10-29 03:42:34
- max_chars: 2,000,000,000
- doc_cap: 10,000
- vocab_size: 65,536
- train_time: 76.6262
- num_special_tokens: 9
- token_bytes_min: 1
- token_bytes_max: 32
- token_bytes_mean: 6.9151
- token_bytes_std: 2.8736
Tokenizer evaluation
timestamp: 2025-10-29 03:42:37
Comparison with GPT-2
| Text Type | Bytes | GPT-2 Tokens | GPT-2 Ratio | Ours Tokens | Ours Ratio | Relative Diff % |
|---|---|---|---|---|---|---|
| news | 1819 | 404 | 4.50 | 375 | 4.85 | +7.2% |
| korean | 893 | 745 | 1.20 | 721 | 1.24 | +3.2% |
| code | 1259 | 576 | 2.19 | 493 | 2.55 | +14.4% |
| math | 1834 | 936 | 1.96 | 966 | 1.90 | -3.2% |
| science | 1112 | 260 | 4.28 | 225 | 4.94 | +13.5% |
| fwe-train | 4208518 | 900364 | 4.67 | 856901 | 4.91 | +4.8% |
| fwe-val | 4908443 | 1059062 | 4.63 | 1010356 | 4.86 | +4.6% |
Comparison with GPT-4
| Text Type | Bytes | GPT-4 Tokens | GPT-4 Ratio | Ours Tokens | Ours Ratio | Relative Diff % |
|---|---|---|---|---|---|---|
| news | 1819 | 387 | 4.70 | 375 | 4.85 | +3.1% |
| korean | 893 | 364 | 2.45 | 721 | 1.24 | -98.1% |
| code | 1259 | 309 | 4.07 | 493 | 2.55 | -59.5% |
| math | 1834 | 832 | 2.20 | 966 | 1.90 | -16.1% |
| science | 1112 | 249 | 4.47 | 225 | 4.94 | +9.6% |
| fwe-train | 4208518 | 874799 | 4.81 | 856901 | 4.91 | +2.0% |
| fwe-val | 4908443 | 1029691 | 4.77 | 1010356 | 4.86 | +1.9% |
Base model training
timestamp: 2025-10-29 07:47:38
- run: my-llm-training-run-003
- device_type:
- depth: 20
- max_seq_len: 2048
- num_iterations: -1
- target_flops: -1.0000
- target_param_data_ratio: 20
- device_batch_size: 64
- total_batch_size: 1,048,576
- embedding_lr: 0.2000
- unembedding_lr: 0.0040
- weight_decay: 0.0000
- matrix_lr: 0.0200
- grad_clip: 1.0000
- warmup_ratio: 0.0000
- warmdown_ratio: 0.2000
- final_lr_frac: 0.0000
- eval_every: 250
- eval_tokens: 10,485,760
- core_metric_every: 2000
- core_metric_max_per_task: 500
- sample_every: 2000
- model_tag:
- Number of parameters: 560,988,160
- Number of FLOPs per token: 3.491758e+09
- Calculated number of iterations: 10,700
- Number of training tokens: 11,219,763,200
- Tokens : Params ratio: 20.0000
- DDP world size: 8
- warmup_ratio: 0.0000
- warmdown_ratio: 0.2000
- final_lr_frac: 0.0000
- Minimum validation bpb: 0.8119
- Final validation bpb: 0.8119
- CORE metric estimate: 0.2077
- MFU %: 33.97%
- Total training flops: 3.917670e+19
- Total training time: 238.88m
- Peak memory usage: 147486.90MiB
Base model loss
timestamp: 2025-10-29 07:48:10
- train bpb: 0.8146
- val bpb: 0.8120
- sample 0: <|bos|>The capital of France is Paris. It is located in the south of France. It is the second largest
- sample 1: <|bos|>The chemical symbol of gold is Au. It is a soft, silvery-white metal that is malleable and ductile.
- sample 2: <|bos|>If yesterday was Friday, then tomorrow will be Saturday. The day before tomorrow will be Saturday. The day after tomorrow will be
- sample 3: <|bos|>The opposite of hot is cold. The opposite of cold is hot. The opposite of hot is cold.
- sample 4: <|bos|>The planets of the solar system are: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune,
- sample 5: <|bos|>My favorite color is blue. I love the color blue. I love the color blue. I love
- sample 6: <|bos|>If 5x + 3 = 13, then x is a positive integer. If 5x + 3 = 13,
Base model evaluation
timestamp: 2025-10-29 07:51:33
- Model: base_model (step 10700)
- CORE metric: 0.2017
- hellaswag_zeroshot: 0.2547
- jeopardy: 0.1053
- bigbench_qa_wikidata: 0.5239
- arc_easy: 0.5118
- arc_challenge: 0.1251
- copa: 0.2200
- commonsense_qa: 0.0981
- piqa: 0.3765
- openbook_qa: 0.1093
- lambada_openai: 0.3868
- hellaswag: 0.2586
- winograd: 0.2161
- winogrande: 0.0481
- bigbench_dyck_languages: 0.1270
- agi_eval_lsat_ar: 0.0870
- bigbench_cs_algorithms: 0.3689
- bigbench_operators: 0.1524
- bigbench_repeat_copy_logic: 0.0000
- squad: 0.2560
- coqa: 0.1929
- boolq: -0.1597
- bigbench_language_identification: 0.1793
Midtraining
timestamp: 2025-10-29 08:02:20
- run: my-llm-training-run-003
- device_type:
- dtype: bfloat16
- num_iterations: -1
- max_seq_len: 2048
- device_batch_size: 64
- unembedding_lr: 0.0040
- embedding_lr: 0.2000
- matrix_lr: 0.0200
- init_lr_frac: 1.0000
- weight_decay: 0.0000
- eval_every: 150
- eval_tokens: 10,485,760
- total_batch_size: 1,048,576
- dry_run: 0
- Number of iterations: 404
- DDP world size: 8
- Minimum validation bpb: 0.3993
Chat evaluation mid
timestamp: 2025-10-29 08:09:19
- source: mid
- task_name: None
- dtype: bfloat16
- temperature: 0.0000
- max_new_tokens: 512
- num_samples: 1
- top_k: 50
- batch_size: 8
- model_tag: None
- step: None
- max_problems: None
- device_type:
- ARC-Easy: 0.4074
- ARC-Challenge: 0.3157
- MMLU: 0.3236
- GSM8K: 0.0394
- HumanEval: 0.0854
- SpellingBee: 0.9688
- ChatCORE metric: 0.2482
Chat SFT
timestamp: 2025-10-29 08:31:28
- run: my-llm-training-run-003
- source: mid
- device_type:
- dtype: bfloat16
- device_batch_size: 4
- num_epochs: 1
- num_iterations: -1
- target_examples_per_step: 32
- unembedding_lr: 0.0040
- embedding_lr: 0.2000
- matrix_lr: 0.0200
- weight_decay: 0.0000
- init_lr_frac: 0.0200
- eval_every: 100
- eval_steps: 100
- eval_metrics_every: 200
- eval_metrics_max_problems: 1024
- Training rows: 22,439
- Number of iterations: 701
- Training loss: 0.5337
- Validation loss: 1.0260
Chat evaluation sft
timestamp: 2025-10-29 08:49:17
- source: sft
- task_name: None
- dtype: bfloat16
- temperature: 0.0000
- max_new_tokens: 512
- num_samples: 1
- top_k: 50
- batch_size: 8
- model_tag: None
- step: None
- max_problems: None
- device_type:
- ARC-Easy: 0.4192
- ARC-Challenge: 0.3148
- MMLU: 0.3192
- GSM8K: 0.0546
- HumanEval: 0.0671
- SpellingBee: 0.9844
- ChatCORE metric: 0.2517
Summary
- Characters: 395,259
- Lines: 9,643
- Files: 47
- Tokens (approx): 98,814
- Dependencies (uv.lock lines): 1,363
| Metric | BASE | MID | SFT | RL |
|---|---|---|---|---|
| CORE | 0.2017 | - | - | - |
| ARC-Challenge | - | 0.3157 | 0.3148 | - |
| ARC-Easy | - | 0.4074 | 0.4192 | - |
| GSM8K | - | 0.0394 | 0.0546 | - |
| HumanEval | - | 0.0854 | 0.0671 | - |
| MMLU | - | 0.3236 | 0.3192 | - |
| ChatCORE | - | 0.2482 | 0.2517 | - |
Total wall clock time: 5h8m
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support