XModBench / README.md
RyanWW's picture
Update README.md
64e7294 verified
---
license: apache-2.0
task_categories:
- multiple-choice
language:
- en
- zh
tags:
- audio-visual
- omnimodality
- multi-modality
- benchmark
pretty_name: 'XModBench '
size_categories:
- 10K<n<100K
---
<h1 align="center">
XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models
</h1>
<p align="center">
<img src="https://xingruiwang.github.io/projects/XModBench/static/images/teaser.png" width="90%" alt="XModBench teaser">
</p>
<p align="center">
<a href="https://arxiv.org/abs/2510.15148">
<img src="https://img.shields.io/badge/Arxiv-Paper-b31b1b.svg" alt="Paper">
</a>
<a href="https://xingruiwang.github.io/projects/XModBench/">
<img src="https://img.shields.io/badge/Website-Page-0a7aca?logo=globe&logoColor=white" alt="Website">
</a>
<a href="https://huggingface.co/datasets/RyanWW/XModBench">
<img src="https://img.shields.io/badge/Huggingface-Dataset-FFD21E?logo=huggingface" alt="Dataset">
</a>
<a href="https://github.com/XingruiWang/XModBench">
<img src="https://img.shields.io/badge/Github-Code-181717?logo=github&logoColor=white" alt="GitHub Repo">
</a>
<a href="https://opensource.org/licenses/MIT">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="License: MIT">
</a>
</p>
XModBench is a comprehensive benchmark designed to evaluate the cross-modal capabilities and consistency of omni-language models. It systematically assesses model performance across multiple modalities (text, vision, audio) and various cognitive tasks, revealing critical gaps in current state-of-the-art models.
### Key Features
- **🎯 Multi-Modal Evaluation**: Comprehensive testing across text, vision, and audio modalities
- **🧩 5 Task Dimensions**: Perception, Spatial, Temporal, Linguistic, and Knowledge tasks
- **📊 13 SOTA Models Evaluated**: Including Gemini 2.5 Pro, Qwen2.5-Omni, EchoInk-R1, and more
- **🔄 Consistency Analysis**: Measures performance stability across different modal configurations
- **👥 Human Performance Baseline**: Establishes human-level benchmarks for comparison
## 🚀 Quick Start
### Installation
```bash
# Clone the repository
git clone https://github.com/XingruiWang/XModBench.git
cd XModBench
# Install dependencies
pip install -r requirements.txt
```
## 📂 Dataset Structure
### Download and Setup
After cloning from HuggingFace, you'll need to extract the data:
```bash
# Download the dataset from HuggingFace
git clone https://huggingface.co/datasets/RyanWW/XModBench
cd XModBench
# Extract the Data.zip file
unzip Data.zip
# Now you have the following structure:
```
### Directory Structure
```
XModBench/
├── Data/ # Unzipped from Data.zip
│ ├── landscape_audiobench/ # Nature sound scenes
│ ├── emotions/ # Emotion classification data
│ ├── solos_processed/ # Musical instrument solos
│ ├── gtzan-dataset-music-genre-classification/ # Music genre data
│ ├── singers_data_processed/ # Singer identification
│ ├── temporal_audiobench/ # Temporal reasoning tasks
│ ├── urbansas_samples_videos_filtered/ # Urban 3D movements
│ ├── STARSS23_processed_augmented/ # Spatial audio panorama
│ ├── vggss_audio_bench/ # Fine-grained audio-visual
│ ├── URMP_processed/ # Musical instrument arrangements
│ ├── ExtremCountAV/ # Counting tasks
│ ├── posters/ # Movie posters
│ └── trailer_clips/ # Movie trailers
└── tasks/ # Task configurations (ready to use)
├── 01_perception/ # Perception tasks
│ ├── finegrained/ # Fine-grained recognition
│ ├── natures/ # Nature scenes
│ ├── instruments/ # Musical instruments
│ ├── instruments_comp/ # Instrument compositions
│ └── general_activities/ # General activities
├── 02_spatial/ # Spatial reasoning tasks
│ ├── 3D_movements/ # 3D movement tracking
│ ├── panaroma/ # Panoramic spatial audio
│ └── arrangements/ # Spatial arrangements
├── 03_speech/ # Speech and language tasks
│ ├── recognition/ # Speech recognition
│ └── translation/ # Translation
├── 04_temporal/ # Temporal reasoning tasks
│ ├── count/ # Temporal counting
│ ├── order/ # Temporal ordering
│ └── calculation/ # Temporal calculations
└── 05_Exteral/ # Additional classification tasks
├── emotion_classification/ # Emotion recognition
├── music_genre_classification/ # Music genre
├── singer_identification/ # Singer identification
└── movie_matching/ # Movie matching
```
**Note**: All file paths in the task JSON files use relative paths (`./benchmark/Data/...`), so ensure your working directory is set correctly when running evaluations.
### Basic Usage
```bash
#!/bin/bash
#SBATCH --job-name=VLM_eval
#SBATCH --output=log/job_%j.out
#SBATCH --error=log/job_%j.log
#SBATCH --ntasks-per-node=1
#SBATCH --gpus-per-node=4
echo "Running on host: $(hostname)"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
module load conda
# conda activate vlm
conda activate omni
export audioBench='/home/xwang378/scratch/2025/AudioBench'
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_audio_vision \
# --sample 1000
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_vision_audio \
# --sample 1000
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_vision_text \
# --sample 1000
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_audio_text \
# --sample 1000
# Qwen2.5-Omni
# python $audioBench/scripts/run.py \
# --model qwen2.5_omni \
# --task_name perception/vggss_audio_text \
# --sample 1000
python $audioBench/scripts/run.py \
--model qwen2.5_omni \
--task_name perception/vggss_vision_text \
--sample 1000
```
## 📈 Benchmark Results
### Overall Performance Comparison
| Model | Perception | Spatial | Temporal | Linguistic | Knowledge | Average |
|-------|------------|---------|----------|------------|-----------|---------|
| **Gemini 2.5 Pro** | 75.9% | 50.1% | 60.8% | 76.8% | 89.3% | 70.6% |
| **Human Performance** | 91.0% | 89.7% | 88.9% | 93.9% | 93.9% | 91.5% |
### Key Findings
#### 1️⃣ Task Competence Gaps
- **Strong Performance**: Perception and linguistic tasks (~75% for best models)
- **Weak Performance**: Spatial (50.1%) and temporal reasoning (60.8%)
- **Performance Drop**: 15-25 points decrease in spatial/temporal vs. perception tasks
#### 2️⃣ Modality Disparity
- **Audio vs. Text**: 20-49 point performance drop
- **Audio vs. Vision**: 33-point average gap
- **Vision vs. Text**: ~15-point disparity
- **Consistency**: Best models show 10-12 point standard deviation
#### 3️⃣ Directional Imbalance
- **Vision↔Text**: 9-17 point gaps between directions
- **Audio↔Text**: 6-8 point asymmetries
- **Root Cause**: Training data imbalance favoring image-to-text over inverse directions
## 📝 Citation
If you use XModBench in your research, please cite our paper:
```bibtex
@article{wang2024xmodbench,
title={XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models},
author={Wang, Xingrui, etc.},
journal={arXiv preprint arXiv:2510.15148},
year={2024}
}
```
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 🙏 Acknowledgments
We thank all contributors and the research community for their valuable feedback and suggestions.
## 📧 Contact
- **Project Lead**: Xingrui Wang
- **Email**: [xwang378@jh.edu]
- **Website**: [https://xingruiwang.github.io/projects/XModBench/](https://xingruiwang.github.io/projects/XModBench/)
## 🔗 Links
- [Project Website](https://xingruiwang.github.io/projects/XModBench/)
- [Paper](https://arxiv.org/abs/xxxx.xxxxx)
- [Leaderboard](https://xingruiwang.github.io/projects/XModBench/leaderboard)
- [Documentation](https://xingruiwang.github.io/projects/XModBench/docs)
## Todo
- [ ] Release Huggingface data
- [x] Release data processing code
- [x] Release data evaluation code
---
**Note**: XModBench is actively maintained and regularly updated with new models and evaluation metrics. For the latest updates, please check our [releases](https://github.com/XingruiWang/XModBench/releases) page.