|
|
--- |
|
|
license: apache-2.0 |
|
|
task_categories: |
|
|
- multiple-choice |
|
|
language: |
|
|
- en |
|
|
- zh |
|
|
tags: |
|
|
- audio-visual |
|
|
- omnimodality |
|
|
- multi-modality |
|
|
- benchmark |
|
|
pretty_name: 'XModBench ' |
|
|
size_categories: |
|
|
- 10K<n<100K |
|
|
--- |
|
|
|
|
|
<h1 align="center"> |
|
|
XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models |
|
|
</h1> |
|
|
|
|
|
<p align="center"> |
|
|
<img src="https://xingruiwang.github.io/projects/XModBench/static/images/teaser.png" width="90%" alt="XModBench teaser"> |
|
|
</p> |
|
|
|
|
|
<p align="center"> |
|
|
<a href="https://arxiv.org/abs/2510.15148"> |
|
|
<img src="https://img.shields.io/badge/Arxiv-Paper-b31b1b.svg" alt="Paper"> |
|
|
</a> |
|
|
<a href="https://xingruiwang.github.io/projects/XModBench/"> |
|
|
<img src="https://img.shields.io/badge/Website-Page-0a7aca?logo=globe&logoColor=white" alt="Website"> |
|
|
</a> |
|
|
<a href="https://huggingface.co/datasets/RyanWW/XModBench"> |
|
|
<img src="https://img.shields.io/badge/Huggingface-Dataset-FFD21E?logo=huggingface" alt="Dataset"> |
|
|
</a> |
|
|
<a href="https://github.com/XingruiWang/XModBench"> |
|
|
<img src="https://img.shields.io/badge/Github-Code-181717?logo=github&logoColor=white" alt="GitHub Repo"> |
|
|
</a> |
|
|
<a href="https://opensource.org/licenses/MIT"> |
|
|
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="License: MIT"> |
|
|
</a> |
|
|
</p> |
|
|
|
|
|
|
|
|
|
|
|
XModBench is a comprehensive benchmark designed to evaluate the cross-modal capabilities and consistency of omni-language models. It systematically assesses model performance across multiple modalities (text, vision, audio) and various cognitive tasks, revealing critical gaps in current state-of-the-art models. |
|
|
|
|
|
### Key Features |
|
|
|
|
|
- **🎯 Multi-Modal Evaluation**: Comprehensive testing across text, vision, and audio modalities |
|
|
- **🧩 5 Task Dimensions**: Perception, Spatial, Temporal, Linguistic, and Knowledge tasks |
|
|
- **📊 13 SOTA Models Evaluated**: Including Gemini 2.5 Pro, Qwen2.5-Omni, EchoInk-R1, and more |
|
|
- **🔄 Consistency Analysis**: Measures performance stability across different modal configurations |
|
|
- **👥 Human Performance Baseline**: Establishes human-level benchmarks for comparison |
|
|
|
|
|
|
|
|
## 🚀 Quick Start |
|
|
|
|
|
### Installation |
|
|
|
|
|
```bash |
|
|
# Clone the repository |
|
|
git clone https://github.com/XingruiWang/XModBench.git |
|
|
cd XModBench |
|
|
|
|
|
# Install dependencies |
|
|
pip install -r requirements.txt |
|
|
``` |
|
|
|
|
|
## 📂 Dataset Structure |
|
|
|
|
|
### Download and Setup |
|
|
|
|
|
After cloning from HuggingFace, you'll need to extract the data: |
|
|
|
|
|
```bash |
|
|
# Download the dataset from HuggingFace |
|
|
git clone https://huggingface.co/datasets/RyanWW/XModBench |
|
|
|
|
|
cd XModBench |
|
|
|
|
|
# Extract the Data.zip file |
|
|
unzip Data.zip |
|
|
|
|
|
# Now you have the following structure: |
|
|
``` |
|
|
|
|
|
### Directory Structure |
|
|
|
|
|
``` |
|
|
XModBench/ |
|
|
├── Data/ # Unzipped from Data.zip |
|
|
│ ├── landscape_audiobench/ # Nature sound scenes |
|
|
│ ├── emotions/ # Emotion classification data |
|
|
│ ├── solos_processed/ # Musical instrument solos |
|
|
│ ├── gtzan-dataset-music-genre-classification/ # Music genre data |
|
|
│ ├── singers_data_processed/ # Singer identification |
|
|
│ ├── temporal_audiobench/ # Temporal reasoning tasks |
|
|
│ ├── urbansas_samples_videos_filtered/ # Urban 3D movements |
|
|
│ ├── STARSS23_processed_augmented/ # Spatial audio panorama |
|
|
│ ├── vggss_audio_bench/ # Fine-grained audio-visual |
|
|
│ ├── URMP_processed/ # Musical instrument arrangements |
|
|
│ ├── ExtremCountAV/ # Counting tasks |
|
|
│ ├── posters/ # Movie posters |
|
|
│ └── trailer_clips/ # Movie trailers |
|
|
│ |
|
|
└── tasks/ # Task configurations (ready to use) |
|
|
├── 01_perception/ # Perception tasks |
|
|
│ ├── finegrained/ # Fine-grained recognition |
|
|
│ ├── natures/ # Nature scenes |
|
|
│ ├── instruments/ # Musical instruments |
|
|
│ ├── instruments_comp/ # Instrument compositions |
|
|
│ └── general_activities/ # General activities |
|
|
├── 02_spatial/ # Spatial reasoning tasks |
|
|
│ ├── 3D_movements/ # 3D movement tracking |
|
|
│ ├── panaroma/ # Panoramic spatial audio |
|
|
│ └── arrangements/ # Spatial arrangements |
|
|
├── 03_speech/ # Speech and language tasks |
|
|
│ ├── recognition/ # Speech recognition |
|
|
│ └── translation/ # Translation |
|
|
├── 04_temporal/ # Temporal reasoning tasks |
|
|
│ ├── count/ # Temporal counting |
|
|
│ ├── order/ # Temporal ordering |
|
|
│ └── calculation/ # Temporal calculations |
|
|
└── 05_Exteral/ # Additional classification tasks |
|
|
├── emotion_classification/ # Emotion recognition |
|
|
├── music_genre_classification/ # Music genre |
|
|
├── singer_identification/ # Singer identification |
|
|
└── movie_matching/ # Movie matching |
|
|
``` |
|
|
|
|
|
**Note**: All file paths in the task JSON files use relative paths (`./benchmark/Data/...`), so ensure your working directory is set correctly when running evaluations. |
|
|
|
|
|
|
|
|
|
|
|
### Basic Usage |
|
|
|
|
|
```bash |
|
|
|
|
|
|
|
|
#!/bin/bash |
|
|
#SBATCH --job-name=VLM_eval |
|
|
#SBATCH --output=log/job_%j.out |
|
|
#SBATCH --error=log/job_%j.log |
|
|
#SBATCH --ntasks-per-node=1 |
|
|
#SBATCH --gpus-per-node=4 |
|
|
|
|
|
echo "Running on host: $(hostname)" |
|
|
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" |
|
|
|
|
|
module load conda |
|
|
# conda activate vlm |
|
|
conda activate omni |
|
|
|
|
|
export audioBench='/home/xwang378/scratch/2025/AudioBench' |
|
|
|
|
|
# python $audioBench/scripts/run.py \ |
|
|
# --model gemini \ |
|
|
# --task_name perception/vggss_audio_vision \ |
|
|
# --sample 1000 |
|
|
|
|
|
|
|
|
# python $audioBench/scripts/run.py \ |
|
|
# --model gemini \ |
|
|
# --task_name perception/vggss_vision_audio \ |
|
|
# --sample 1000 |
|
|
|
|
|
# python $audioBench/scripts/run.py \ |
|
|
# --model gemini \ |
|
|
# --task_name perception/vggss_vision_text \ |
|
|
# --sample 1000 |
|
|
|
|
|
# python $audioBench/scripts/run.py \ |
|
|
# --model gemini \ |
|
|
# --task_name perception/vggss_audio_text \ |
|
|
# --sample 1000 |
|
|
|
|
|
# Qwen2.5-Omni |
|
|
|
|
|
# python $audioBench/scripts/run.py \ |
|
|
# --model qwen2.5_omni \ |
|
|
# --task_name perception/vggss_audio_text \ |
|
|
# --sample 1000 |
|
|
|
|
|
python $audioBench/scripts/run.py \ |
|
|
--model qwen2.5_omni \ |
|
|
--task_name perception/vggss_vision_text \ |
|
|
--sample 1000 |
|
|
|
|
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
|
|
## 📈 Benchmark Results |
|
|
|
|
|
### Overall Performance Comparison |
|
|
|
|
|
| Model | Perception | Spatial | Temporal | Linguistic | Knowledge | Average | |
|
|
|-------|------------|---------|----------|------------|-----------|---------| |
|
|
| **Gemini 2.5 Pro** | 75.9% | 50.1% | 60.8% | 76.8% | 89.3% | 70.6% | |
|
|
| **Human Performance** | 91.0% | 89.7% | 88.9% | 93.9% | 93.9% | 91.5% | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
#### 1️⃣ Task Competence Gaps |
|
|
- **Strong Performance**: Perception and linguistic tasks (~75% for best models) |
|
|
- **Weak Performance**: Spatial (50.1%) and temporal reasoning (60.8%) |
|
|
- **Performance Drop**: 15-25 points decrease in spatial/temporal vs. perception tasks |
|
|
|
|
|
#### 2️⃣ Modality Disparity |
|
|
- **Audio vs. Text**: 20-49 point performance drop |
|
|
- **Audio vs. Vision**: 33-point average gap |
|
|
- **Vision vs. Text**: ~15-point disparity |
|
|
- **Consistency**: Best models show 10-12 point standard deviation |
|
|
|
|
|
#### 3️⃣ Directional Imbalance |
|
|
- **Vision↔Text**: 9-17 point gaps between directions |
|
|
- **Audio↔Text**: 6-8 point asymmetries |
|
|
- **Root Cause**: Training data imbalance favoring image-to-text over inverse directions |
|
|
|
|
|
## 📝 Citation |
|
|
|
|
|
If you use XModBench in your research, please cite our paper: |
|
|
|
|
|
```bibtex |
|
|
@article{wang2024xmodbench, |
|
|
title={XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models}, |
|
|
author={Wang, Xingrui, etc.}, |
|
|
journal={arXiv preprint arXiv:2510.15148}, |
|
|
year={2024} |
|
|
} |
|
|
``` |
|
|
|
|
|
## 📄 License |
|
|
|
|
|
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. |
|
|
|
|
|
## 🙏 Acknowledgments |
|
|
|
|
|
We thank all contributors and the research community for their valuable feedback and suggestions. |
|
|
|
|
|
## 📧 Contact |
|
|
|
|
|
- **Project Lead**: Xingrui Wang |
|
|
- **Email**: [xwang378@jh.edu] |
|
|
- **Website**: [https://xingruiwang.github.io/projects/XModBench/](https://xingruiwang.github.io/projects/XModBench/) |
|
|
|
|
|
## 🔗 Links |
|
|
|
|
|
- [Project Website](https://xingruiwang.github.io/projects/XModBench/) |
|
|
- [Paper](https://arxiv.org/abs/xxxx.xxxxx) |
|
|
- [Leaderboard](https://xingruiwang.github.io/projects/XModBench/leaderboard) |
|
|
- [Documentation](https://xingruiwang.github.io/projects/XModBench/docs) |
|
|
|
|
|
|
|
|
## Todo |
|
|
|
|
|
- [ ] Release Huggingface data |
|
|
- [x] Release data processing code |
|
|
- [x] Release data evaluation code |
|
|
--- |
|
|
|
|
|
**Note**: XModBench is actively maintained and regularly updated with new models and evaluation metrics. For the latest updates, please check our [releases](https://github.com/XingruiWang/XModBench/releases) page. |