Brown2020 / scripts /taskInit.m
jalauer's picture
Add files using upload-large-folder tool
227148b verified
% initialize the task structure
function [disp_struct, task_struct] = taskInit(disp_struct, task_struct, SCREENS, session, LEFTKEY, RIGHTKEY)
% structure to hold data pertinant to the task
task_data = struct();
% set up the matrix columns
task_struct.cBlock = 1;
task_struct.cTrialNum = 2;
task_struct.cTrialID = 3;
task_struct.cTrialCond = 4;
task_struct.cTrialType = 5;
task_struct.cS1 = 6;
task_struct.cS1Rew = 7;
task_struct.cS2 = 8;
task_struct.cS2Rew = 9;
task_struct.cIsS1Left = 10;
task_struct.cRespAct = 11;
task_struct.cMatch = 12;
task_struct.cRespRew = 13;
task_struct.cRT = 14;
% maximum trial gap between free-choice and its no-choice pair
task_struct.maxGap = 7;
% code for each stimulus
task_struct.sCodes = struct('Afc', 1, 'Bfc', 2, 'Cfc', 3, 'Dfc', 4, 'Anc', 5, 'Bnc', 6, 'Cnc', 7, 'Dnc', 8);
% the reward probabilities for each stim
task_struct.pWin = [0.9 0.1 0.7 0.3 0.9 0.1 0.7 0.3]; % JFC changed to 90/10 and 70/30
% number of reps for each stimulus pair per training block
task_struct.numTrainReps = 10;
task_struct.numTestBiasReps = 10;
task_struct.numTestABReps = 4;
task_struct.numTestTrainReps = 4;
% index to match each free-choice with it's no-choice stim pair
task_struct.ncAdjust = 4;
% max response time
task_struct.maxRT = 4;
% training performance thresholds
task_struct.minPerf = [0.60 0.60];
% min/max number of training blocks
task_struct.minTrain = 3;
task_struct.maxTrain = 5;
% condition flags for each trial type
task_struct.NC = 0;
task_struct.FC = 1;
task_struct.PRAC = -1;
task_struct.TRAIN = 0;
task_struct.TEST = 1;
task_struct.WIN = 1;
task_struct.LOSS = 0;
% set up the response keys
disp_struct.RESP_L = LEFTKEY;
disp_struct.RESP_R = RIGHTKEY;
disp_struct.RESP_SLOW = -1;
% first set up the display window
% screenRect_debug = [0,0,1000,800]; % screen for debugging
screenRect_task = []; % full screen
% open the window
[wPtr,rect] = Screen('OpenWindow', SCREENS, [], screenRect_task);
% store the display window and it's bounds
disp_struct.wPtr = wPtr;
disp_struct.wPtr_rect = rect;
% load the images
if session==1
cardNames = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'I', 'J', 'K', 'L'}; % Practice stims repeated here b/c of laziness
elseif session==2
cardNames = {'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'I', 'J', 'K', 'L', 'I', 'J', 'K', 'L'}; % Practice stims repeated here b/c of laziness
else
disp(' '); disp(' '); disp(' '); disp('Enter a 1 or a 2 for session!'); disp(' ');
end
disp_struct.cards = nan(length(cardNames), 1);
for imgI = 1 : length(cardNames)
disp_struct.cards(imgI) = Screen('MakeTexture', disp_struct.wPtr, imread(fullfile('..', 'images', [cardNames{imgI},'.bmp'])));
end % for each card
% randomize the first 8 (I,J,K,L are for practice)
disp_struct.cards(1:length(task_struct.pWin)) = disp_struct.cards(randperm(length(task_struct.pWin)));
end % function