id
stringlengths
14
15
text
stringlengths
22
2.51k
source
stringlengths
61
154
7cba0af7fead-1
embed_query(text: str) → List[float][source]¶ Generates an embedding for a single piece of text. Parameters text (str) – The text to generate an embedding for. Returns The embedding for the text. validator validate_environment  »  all fields[source]¶ Validates that the Spacy package and the ‘en_core_web_sm’ model are installed. Parameters values (Dict) – The values provided to the class constructor. Returns The validated values. Raises ValueError – If the Spacy package or the ‘en_core_web_sm’ model are not installed. – model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.spacy_embeddings.SpacyEmbeddings.html
6704695e37d4-0
langchain.embeddings.deepinfra.DeepInfraEmbeddings¶ class langchain.embeddings.deepinfra.DeepInfraEmbeddings(*, model_id: str = 'sentence-transformers/clip-ViT-B-32', normalize: bool = False, embed_instruction: str = 'passage: ', query_instruction: str = 'query: ', model_kwargs: Optional[dict] = None, deepinfra_api_token: Optional[str] = None)[source]¶ Bases: BaseModel, Embeddings Wrapper around Deep Infra’s embedding inference service. To use, you should have the environment variable DEEPINFRA_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. There are multiple embeddings models available, see https://deepinfra.com/models?type=embeddings. Example from langchain.embeddings import DeepInfraEmbeddings deepinfra_emb = DeepInfraEmbeddings( model_id="sentence-transformers/clip-ViT-B-32", deepinfra_api_token="my-api-key" ) r1 = deepinfra_emb.embed_documents( [ "Alpha is the first letter of Greek alphabet", "Beta is the second letter of Greek alphabet", ] ) r2 = deepinfra_emb.embed_query( "What is the second letter of Greek alphabet" ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param deepinfra_api_token: Optional[str] = None¶ param embed_instruction: str = 'passage: '¶ Instruction used to embed documents. param model_id: str = 'sentence-transformers/clip-ViT-B-32'¶ Embeddings model to use. param model_kwargs: Optional[dict] = None¶ Other model keyword args
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.deepinfra.DeepInfraEmbeddings.html
6704695e37d4-1
param model_kwargs: Optional[dict] = None¶ Other model keyword args param normalize: bool = False¶ whether to normalize the computed embeddings param query_instruction: str = 'query: '¶ Instruction used to embed the query. embed_documents(texts: List[str]) → List[List[float]][source]¶ Embed documents using a Deep Infra deployed embedding model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Embed a query using a Deep Infra deployed embedding model. Parameters text – The text to embed. Returns Embeddings for the text. validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.deepinfra.DeepInfraEmbeddings.html
8af2a2acc7e6-0
langchain.embeddings.dashscope.embed_with_retry¶ langchain.embeddings.dashscope.embed_with_retry(embeddings: DashScopeEmbeddings, **kwargs: Any) → Any[source]¶ Use tenacity to retry the embedding call.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.dashscope.embed_with_retry.html
59f4c723c6b9-0
langchain.embeddings.base.Embeddings¶ class langchain.embeddings.base.Embeddings[source]¶ Bases: ABC Interface for embedding models. Methods __init__() aembed_documents(texts) Embed search docs. aembed_query(text) Embed query text. embed_documents(texts) Embed search docs. embed_query(text) Embed query text. async aembed_documents(texts: List[str]) → List[List[float]][source]¶ Embed search docs. async aembed_query(text: str) → List[float][source]¶ Embed query text. abstract embed_documents(texts: List[str]) → List[List[float]][source]¶ Embed search docs. abstract embed_query(text: str) → List[float][source]¶ Embed query text.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.base.Embeddings.html
9bf660541009-0
langchain.embeddings.openai.OpenAIEmbeddings¶ class langchain.embeddings.openai.OpenAIEmbeddings(*, client: Any = None, model: str = 'text-embedding-ada-002', deployment: str = 'text-embedding-ada-002', openai_api_version: Optional[str] = None, openai_api_base: Optional[str] = None, openai_api_type: Optional[str] = None, openai_proxy: Optional[str] = None, embedding_ctx_length: int = 8191, openai_api_key: Optional[str] = None, openai_organization: Optional[str] = None, allowed_special: Union[Literal['all'], Set[str]] = {}, disallowed_special: Union[Literal['all'], Set[str], Sequence[str]] = 'all', chunk_size: int = 1000, max_retries: int = 6, request_timeout: Optional[Union[float, Tuple[float, float]]] = None, headers: Any = None, tiktoken_model_name: Optional[str] = None, show_progress_bar: bool = False)[source]¶ Bases: BaseModel, Embeddings Wrapper around OpenAI embedding models. To use, you should have the openai python package installed, and the environment variable OPENAI_API_KEY set with your API key or pass it as a named parameter to the constructor. Example from langchain.embeddings import OpenAIEmbeddings openai = OpenAIEmbeddings(openai_api_key="my-api-key") In order to use the library with Microsoft Azure endpoints, you need to set the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION. The OPENAI_API_TYPE must be set to ‘azure’ and the others correspond to the properties of your endpoint. In addition, the deployment name must be passed as the model parameter. Example import os
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.OpenAIEmbeddings.html
9bf660541009-1
In addition, the deployment name must be passed as the model parameter. Example import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/" os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key" os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview" os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080" from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings( deployment="your-embeddings-deployment-name", model="your-embeddings-model-name", openai_api_base="https://your-endpoint.openai.azure.com/", openai_api_type="azure", ) text = "This is a test query." query_result = embeddings.embed_query(text) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param allowed_special: Union[Literal['all'], Set[str]] = {}¶ param chunk_size: int = 1000¶ Maximum number of texts to embed in each batch param deployment: str = 'text-embedding-ada-002'¶ param disallowed_special: Union[Literal['all'], Set[str], Sequence[str]] = 'all'¶ param embedding_ctx_length: int = 8191¶ param headers: Any = None¶ param max_retries: int = 6¶ Maximum number of retries to make when generating. param model: str = 'text-embedding-ada-002'¶ param openai_api_base: Optional[str] = None¶ param openai_api_key: Optional[str] = None¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.OpenAIEmbeddings.html
9bf660541009-2
param openai_api_key: Optional[str] = None¶ param openai_api_type: Optional[str] = None¶ param openai_api_version: Optional[str] = None¶ param openai_organization: Optional[str] = None¶ param openai_proxy: Optional[str] = None¶ param request_timeout: Optional[Union[float, Tuple[float, float]]] = None¶ Timeout in seconds for the OpenAPI request. param show_progress_bar: bool = False¶ Whether to show a progress bar when embedding. param tiktoken_model_name: Optional[str] = None¶ The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here. async aembed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]][source]¶ Call out to OpenAI’s embedding endpoint async for embedding search docs. Parameters texts – The list of texts to embed. chunk_size – The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns List of embeddings, one for each text. async aembed_query(text: str) → List[float][source]¶ Call out to OpenAI’s embedding endpoint async for embedding query text. Parameters
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.OpenAIEmbeddings.html
9bf660541009-3
Call out to OpenAI’s embedding endpoint async for embedding query text. Parameters text – The text to embed. Returns Embedding for the text. embed_documents(texts: List[str], chunk_size: Optional[int] = 0) → List[List[float]][source]¶ Call out to OpenAI’s embedding endpoint for embedding search docs. Parameters texts – The list of texts to embed. chunk_size – The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Call out to OpenAI’s embedding endpoint for embedding query text. Parameters text – The text to embed. Returns Embedding for the text. validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.openai.OpenAIEmbeddings.html
41fde8dac96a-0
langchain.embeddings.octoai_embeddings.OctoAIEmbeddings¶ class langchain.embeddings.octoai_embeddings.OctoAIEmbeddings(*, endpoint_url: Optional[str] = None, model_kwargs: Optional[dict] = None, octoai_api_token: Optional[str] = None, embed_instruction: str = 'Represent this input: ', query_instruction: str = 'Represent the question for retrieving similar documents: ')[source]¶ Bases: BaseModel, Embeddings Wrapper around OctoAI Compute Service embedding models. The environment variable OCTOAI_API_TOKEN should be set with your API token, or it can be passed as a named parameter to the constructor. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param embed_instruction: str = 'Represent this input: '¶ Instruction to use for embedding documents. param endpoint_url: Optional[str] = None¶ Endpoint URL to use. param model_kwargs: Optional[dict] = None¶ Keyword arguments to pass to the model. param octoai_api_token: Optional[str] = None¶ OCTOAI API Token param query_instruction: str = 'Represent the question for retrieving similar documents: '¶ Instruction to use for embedding query. embed_documents(texts: List[str]) → List[List[float]][source]¶ Compute document embeddings using an OctoAI instruct model. embed_query(text: str) → List[float][source]¶ Compute query embedding using an OctoAI instruct model. validator validate_environment  »  all fields[source]¶ Ensure that the API key and python package exist in environment. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.octoai_embeddings.OctoAIEmbeddings.html
b1dee6b8a1e4-0
langchain.embeddings.google_palm.GooglePalmEmbeddings¶ class langchain.embeddings.google_palm.GooglePalmEmbeddings(*, client: Any = None, google_api_key: Optional[str] = None, model_name: str = 'models/embedding-gecko-001')[source]¶ Bases: BaseModel, Embeddings Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param client: Any = None¶ param google_api_key: Optional[str] = None¶ param model_name: str = 'models/embedding-gecko-001'¶ Model name to use. embed_documents(texts: List[str]) → List[List[float]][source]¶ Embed search docs. embed_query(text: str) → List[float][source]¶ Embed query text. validator validate_environment  »  all fields[source]¶ Validate api key, python package exists.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.google_palm.GooglePalmEmbeddings.html
1a4c24a9396c-0
langchain.embeddings.mosaicml.MosaicMLInstructorEmbeddings¶ class langchain.embeddings.mosaicml.MosaicMLInstructorEmbeddings(*, endpoint_url: str = 'https://models.hosted-on.mosaicml.hosting/instructor-xl/v1/predict', embed_instruction: str = 'Represent the document for retrieval: ', query_instruction: str = 'Represent the question for retrieving supporting documents: ', retry_sleep: float = 1.0, mosaicml_api_token: Optional[str] = None)[source]¶ Bases: BaseModel, Embeddings Wrapper around MosaicML’s embedding inference service. To use, you should have the environment variable MOSAICML_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. Example from langchain.llms import MosaicMLInstructorEmbeddings endpoint_url = ( "https://models.hosted-on.mosaicml.hosting/instructor-large/v1/predict" ) mosaic_llm = MosaicMLInstructorEmbeddings( endpoint_url=endpoint_url, mosaicml_api_token="my-api-key" ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param embed_instruction: str = 'Represent the document for retrieval: '¶ Instruction used to embed documents. param endpoint_url: str = 'https://models.hosted-on.mosaicml.hosting/instructor-xl/v1/predict'¶ Endpoint URL to use. param mosaicml_api_token: Optional[str] = None¶ param query_instruction: str = 'Represent the question for retrieving supporting documents: '¶ Instruction used to embed the query. param retry_sleep: float = 1.0¶ How long to try sleeping for if a rate limit is encountered
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.mosaicml.MosaicMLInstructorEmbeddings.html
1a4c24a9396c-1
How long to try sleeping for if a rate limit is encountered embed_documents(texts: List[str]) → List[List[float]][source]¶ Embed documents using a MosaicML deployed instructor embedding model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Embed a query using a MosaicML deployed instructor embedding model. Parameters text – The text to embed. Returns Embeddings for the text. validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.mosaicml.MosaicMLInstructorEmbeddings.html
58973ddbaf50-0
langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings¶ class langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings(*, cache: ~typing.Optional[bool] = None, verbose: bool = None, callbacks: ~typing.Optional[~typing.Union[~typing.List[~langchain.callbacks.base.BaseCallbackHandler], ~langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: ~typing.Optional[~langchain.callbacks.base.BaseCallbackManager] = None, tags: ~typing.Optional[~typing.List[str]] = None, metadata: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, pipeline_ref: ~typing.Any = None, client: ~typing.Any = None, inference_fn: ~typing.Callable = <function _embed_documents>, hardware: ~typing.Any = None, model_load_fn: ~typing.Callable = <function load_embedding_model>, load_fn_kwargs: ~typing.Optional[dict] = None, model_reqs: ~typing.List[str] = ['./', 'sentence_transformers', 'torch'], inference_kwargs: ~typing.Any = None, model_id: str = 'sentence-transformers/all-mpnet-base-v2')[source]¶ Bases: SelfHostedEmbeddings Runs sentence_transformers embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the runhouse python package installed. Example from langchain.embeddings import SelfHostedHuggingFaceEmbeddings import runhouse as rh model_name = "sentence-transformers/all-mpnet-base-v2"
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html
58973ddbaf50-1
model_name = "sentence-transformers/all-mpnet-base-v2" gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu) Initialize the remote inference function. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param hardware: Any = None¶ Remote hardware to send the inference function to. param inference_fn: Callable = <function _embed_documents>¶ Inference function to extract the embeddings. param inference_kwargs: Any = None¶ Any kwargs to pass to the model’s inference function. param load_fn_kwargs: Optional[dict] = None¶ Key word arguments to pass to the model load function. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_id: str = 'sentence-transformers/all-mpnet-base-v2'¶ Model name to use. param model_load_fn: Callable = <function load_embedding_model>¶ Function to load the model remotely on the server. param model_reqs: List[str] = ['./', 'sentence_transformers', 'torch']¶ Requirements to install on hardware to inference the model. param pipeline_ref: Any = None¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html
58973ddbaf50-2
param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html
58973ddbaf50-3
first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. embed_documents(texts: List[str]) → List[List[float]]¶ Compute doc embeddings using a HuggingFace transformer model.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html
58973ddbaf50-4
Compute doc embeddings using a HuggingFace transformer model. Parameters texts – The list of texts to embed.s Returns List of embeddings, one for each text. embed_query(text: str) → List[float]¶ Compute query embeddings using a HuggingFace transformer model. Parameters text – The text to embed. Returns Embeddings for the text. classmethod from_pipeline(pipeline: Any, hardware: Any, model_reqs: Optional[List[str]] = None, device: int = 0, **kwargs: Any) → LLM¶ Init the SelfHostedPipeline from a pipeline object or string. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html
58973ddbaf50-5
text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html
58973ddbaf50-6
stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html
58973ddbaf50-7
property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings.html
bfd0c04d34bf-0
langchain.embeddings.self_hosted_hugging_face.load_embedding_model¶ langchain.embeddings.self_hosted_hugging_face.load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) → Any[source]¶ Load the embedding model.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted_hugging_face.load_embedding_model.html
d1994434d818-0
langchain.embeddings.embaas.EmbaasEmbeddings¶ class langchain.embeddings.embaas.EmbaasEmbeddings(*, model: str = 'e5-large-v2', instruction: Optional[str] = None, api_url: str = 'https://api.embaas.io/v1/embeddings/', embaas_api_key: Optional[str] = None)[source]¶ Bases: BaseModel, Embeddings Wrapper around embaas’s embedding service. To use, you should have the environment variable EMBAAS_API_KEY set with your API key, or pass it as a named parameter to the constructor. Example # Initialise with default model and instruction from langchain.embeddings import EmbaasEmbeddings emb = EmbaasEmbeddings() # Initialise with custom model and instruction from langchain.embeddings import EmbaasEmbeddings emb_model = "instructor-large" emb_inst = "Represent the Wikipedia document for retrieval" emb = EmbaasEmbeddings( model=emb_model, instruction=emb_inst ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param api_url: str = 'https://api.embaas.io/v1/embeddings/'¶ The URL for the embaas embeddings API. param embaas_api_key: Optional[str] = None¶ param instruction: Optional[str] = None¶ Instruction used for domain-specific embeddings. param model: str = 'e5-large-v2'¶ The model used for embeddings. embed_documents(texts: List[str]) → List[List[float]][source]¶ Get embeddings for a list of texts. Parameters texts – The list of texts to get embeddings for. Returns List of embeddings, one for each text.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.embaas.EmbaasEmbeddings.html
d1994434d818-1
Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Get embeddings for a single text. Parameters text – The text to get embeddings for. Returns List of embeddings. validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.embaas.EmbaasEmbeddings.html
de601927bbc3-0
langchain.embeddings.dashscope.DashScopeEmbeddings¶ class langchain.embeddings.dashscope.DashScopeEmbeddings(*, client: Any = None, model: str = 'text-embedding-v1', dashscope_api_key: Optional[str] = None, max_retries: int = 5)[source]¶ Bases: BaseModel, Embeddings Wrapper around DashScope embedding models. To use, you should have the dashscope python package installed, and the environment variable DASHSCOPE_API_KEY set with your API key or pass it as a named parameter to the constructor. Example from langchain.embeddings import DashScopeEmbeddings embeddings = DashScopeEmbeddings(dashscope_api_key="my-api-key") Example import os os.environ["DASHSCOPE_API_KEY"] = "your DashScope API KEY" from langchain.embeddings.dashscope import DashScopeEmbeddings embeddings = DashScopeEmbeddings( model="text-embedding-v1", ) text = "This is a test query." query_result = embeddings.embed_query(text) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param dashscope_api_key: Optional[str] = None¶ Maximum number of retries to make when generating. param max_retries: int = 5¶ param model: str = 'text-embedding-v1'¶ embed_documents(texts: List[str]) → List[List[float]][source]¶ Call out to DashScope’s embedding endpoint for embedding search docs. Parameters texts – The list of texts to embed. chunk_size – The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns List of embeddings, one for each text.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.dashscope.DashScopeEmbeddings.html
de601927bbc3-1
specified by the class. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Call out to DashScope’s embedding endpoint for embedding query text. Parameters text – The text to embed. Returns Embedding for the text. validator validate_environment  »  all fields[source]¶ model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.dashscope.DashScopeEmbeddings.html
2f3c083275ab-0
langchain.embeddings.minimax.MiniMaxEmbeddings¶ class langchain.embeddings.minimax.MiniMaxEmbeddings(*, endpoint_url: str = 'https://api.minimax.chat/v1/embeddings', model: str = 'embo-01', embed_type_db: str = 'db', embed_type_query: str = 'query', minimax_group_id: Optional[str] = None, minimax_api_key: Optional[str] = None)[source]¶ Bases: BaseModel, Embeddings Wrapper around MiniMax’s embedding inference service. To use, you should have the environment variable MINIMAX_GROUP_ID and MINIMAX_API_KEY set with your API token, or pass it as a named parameter to the constructor. Example from langchain.embeddings import MiniMaxEmbeddings embeddings = MiniMaxEmbeddings() query_text = "This is a test query." query_result = embeddings.embed_query(query_text) document_text = "This is a test document." document_result = embeddings.embed_documents([document_text]) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param embed_type_db: str = 'db'¶ For embed_documents param embed_type_query: str = 'query'¶ For embed_query param endpoint_url: str = 'https://api.minimax.chat/v1/embeddings'¶ Endpoint URL to use. param minimax_api_key: Optional[str] = None¶ API Key for MiniMax API. param minimax_group_id: Optional[str] = None¶ Group ID for MiniMax API. param model: str = 'embo-01'¶ Embeddings model name to use. embed(texts: List[str], embed_type: str) → List[List[float]][source]¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.minimax.MiniMaxEmbeddings.html
2f3c083275ab-1
embed_documents(texts: List[str]) → List[List[float]][source]¶ Embed documents using a MiniMax embedding endpoint. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Embed a query using a MiniMax embedding endpoint. Parameters text – The text to embed. Returns Embeddings for the text. validator validate_environment  »  all fields[source]¶ Validate that group id and api key exists in environment. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.minimax.MiniMaxEmbeddings.html
d31f9fd9e3bf-0
langchain.embeddings.aleph_alpha.AlephAlphaAsymmetricSemanticEmbedding¶ class langchain.embeddings.aleph_alpha.AlephAlphaAsymmetricSemanticEmbedding(*, client: Any = None, model: Optional[str] = 'luminous-base', hosting: Optional[str] = 'https://api.aleph-alpha.com', normalize: Optional[bool] = True, compress_to_size: Optional[int] = 128, contextual_control_threshold: Optional[int] = None, control_log_additive: Optional[bool] = True, aleph_alpha_api_key: Optional[str] = None)[source]¶ Bases: BaseModel, Embeddings Wrapper for Aleph Alpha’s Asymmetric Embeddings AA provides you with an endpoint to embed a document and a query. The models were optimized to make the embeddings of documents and the query for a document as similar as possible. To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/ Example from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding embeddings = AlephAlphaSymmetricSemanticEmbedding() document = "This is a content of the document" query = "What is the content of the document?" doc_result = embeddings.embed_documents([document]) query_result = embeddings.embed_query(query) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param aleph_alpha_api_key: Optional[str] = None¶ API key for Aleph Alpha API. param compress_to_size: Optional[int] = 128¶ Should the returned embeddings come back as an original 5120-dim vector, or should it be compressed to 128-dim. param contextual_control_threshold: Optional[int] = None¶ Attention control parameters only apply to those tokens that have
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.aleph_alpha.AlephAlphaAsymmetricSemanticEmbedding.html
d31f9fd9e3bf-1
Attention control parameters only apply to those tokens that have explicitly been set in the request. param control_log_additive: Optional[bool] = True¶ Apply controls on prompt items by adding the log(control_factor) to attention scores. param hosting: Optional[str] = 'https://api.aleph-alpha.com'¶ Optional parameter that specifies which datacenters may process the request. param model: Optional[str] = 'luminous-base'¶ Model name to use. param normalize: Optional[bool] = True¶ Should returned embeddings be normalized embed_documents(texts: List[str]) → List[List[float]][source]¶ Call out to Aleph Alpha’s asymmetric Document endpoint. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Call out to Aleph Alpha’s asymmetric, query embedding endpoint :param text: The text to embed. Returns Embeddings for the text. validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.aleph_alpha.AlephAlphaAsymmetricSemanticEmbedding.html
8b97d480fe0a-0
langchain.embeddings.modelscope_hub.ModelScopeEmbeddings¶ class langchain.embeddings.modelscope_hub.ModelScopeEmbeddings(*, embed: Any = None, model_id: str = 'damo/nlp_corom_sentence-embedding_english-base')[source]¶ Bases: BaseModel, Embeddings Wrapper around modelscope_hub embedding models. To use, you should have the modelscope python package installed. Example from langchain.embeddings import ModelScopeEmbeddings model_id = "damo/nlp_corom_sentence-embedding_english-base" embed = ModelScopeEmbeddings(model_id=model_id) Initialize the modelscope param embed: Any = None¶ param model_id: str = 'damo/nlp_corom_sentence-embedding_english-base'¶ Model name to use. embed_documents(texts: List[str]) → List[List[float]][source]¶ Compute doc embeddings using a modelscope embedding model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Compute query embeddings using a modelscope embedding model. Parameters text – The text to embed. Returns Embeddings for the text. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.modelscope_hub.ModelScopeEmbeddings.html
8fc4e78a51ca-0
langchain.embeddings.bedrock.BedrockEmbeddings¶ class langchain.embeddings.bedrock.BedrockEmbeddings(*, client: Any = None, region_name: Optional[str] = None, credentials_profile_name: Optional[str] = None, model_id: str = 'amazon.titan-e1t-medium', model_kwargs: Optional[Dict] = None)[source]¶ Bases: BaseModel, Embeddings Embeddings provider to invoke Bedrock embedding models. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Bedrock service. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param credentials_profile_name: Optional[str] = None¶ The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html param model_id: str = 'amazon.titan-e1t-medium'¶ Id of the model to call, e.g., amazon.titan-e1t-medium, this is equivalent to the modelId property in the list-foundation-models api param model_kwargs: Optional[Dict] = None¶ Key word arguments to pass to the model. param region_name: Optional[str] = None¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.bedrock.BedrockEmbeddings.html
8fc4e78a51ca-1
param region_name: Optional[str] = None¶ The aws region e.g., us-west-2. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here. embed_documents(texts: List[str], chunk_size: int = 1) → List[List[float]][source]¶ Compute doc embeddings using a Bedrock model. Parameters texts – The list of texts to embed. chunk_size – Bedrock currently only allows single string inputs, so chunk size is always 1. This input is here only for compatibility with the embeddings interface. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Compute query embeddings using a Bedrock model. Parameters text – The text to embed. Returns Embeddings for the text. validator validate_environment  »  all fields[source]¶ Validate that AWS credentials to and python package exists in environment. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.bedrock.BedrockEmbeddings.html
9c50c40801d0-0
langchain.embeddings.cohere.CohereEmbeddings¶ class langchain.embeddings.cohere.CohereEmbeddings(*, client: Any = None, model: str = 'embed-english-v2.0', truncate: Optional[str] = None, cohere_api_key: Optional[str] = None)[source]¶ Bases: BaseModel, Embeddings Wrapper around Cohere embedding models. To use, you should have the cohere python package installed, and the environment variable COHERE_API_KEY set with your API key or pass it as a named parameter to the constructor. Example from langchain.embeddings import CohereEmbeddings cohere = CohereEmbeddings( model="embed-english-light-v2.0", cohere_api_key="my-api-key" ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cohere_api_key: Optional[str] = None¶ param model: str = 'embed-english-v2.0'¶ Model name to use. param truncate: Optional[str] = None¶ Truncate embeddings that are too long from start or end (“NONE”|”START”|”END”) embed_documents(texts: List[str]) → List[List[float]][source]¶ Call out to Cohere’s embedding endpoint. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Call out to Cohere’s embedding endpoint. Parameters text – The text to embed. Returns Embeddings for the text. validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. model Config[source]¶ Bases: object
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.cohere.CohereEmbeddings.html
9c50c40801d0-1
model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.cohere.CohereEmbeddings.html
5393ca2544d6-0
langchain.embeddings.sagemaker_endpoint.EmbeddingsContentHandler¶ class langchain.embeddings.sagemaker_endpoint.EmbeddingsContentHandler[source]¶ Bases: ContentHandlerBase[List[str], List[List[float]]] Content handler for LLM class. Methods __init__() transform_input(prompt, model_kwargs) Transforms the input to a format that model can accept as the request Body. transform_output(output) Transforms the output from the model to string that the LLM class expects. Attributes accepts The MIME type of the response data returned from endpoint content_type The MIME type of the input data passed to endpoint abstract transform_input(prompt: INPUT_TYPE, model_kwargs: Dict) → bytes¶ Transforms the input to a format that model can accept as the request Body. Should return bytes or seekable file like object in the format specified in the content_type request header. abstract transform_output(output: bytes) → OUTPUT_TYPE¶ Transforms the output from the model to string that the LLM class expects. accepts: Optional[str] = 'text/plain'¶ The MIME type of the response data returned from endpoint content_type: Optional[str] = 'text/plain'¶ The MIME type of the input data passed to endpoint
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.sagemaker_endpoint.EmbeddingsContentHandler.html
c2f9bc9d3f9d-0
langchain.embeddings.self_hosted.SelfHostedEmbeddings¶ class langchain.embeddings.self_hosted.SelfHostedEmbeddings(*, cache: ~typing.Optional[bool] = None, verbose: bool = None, callbacks: ~typing.Optional[~typing.Union[~typing.List[~langchain.callbacks.base.BaseCallbackHandler], ~langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: ~typing.Optional[~langchain.callbacks.base.BaseCallbackManager] = None, tags: ~typing.Optional[~typing.List[str]] = None, metadata: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, pipeline_ref: ~typing.Any = None, client: ~typing.Any = None, inference_fn: ~typing.Callable = <function _embed_documents>, hardware: ~typing.Any = None, model_load_fn: ~typing.Callable, load_fn_kwargs: ~typing.Optional[dict] = None, model_reqs: ~typing.List[str] = ['./', 'torch'], inference_kwargs: ~typing.Any = None)[source]¶ Bases: SelfHostedPipeline, Embeddings Runs custom embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the runhouse python package installed. Example using a model load function:from langchain.embeddings import SelfHostedEmbeddings from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import runhouse as rh gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") def get_pipeline(): model_id = "facebook/bart-large"
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted.SelfHostedEmbeddings.html
c2f9bc9d3f9d-1
def get_pipeline(): model_id = "facebook/bart-large" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) return pipeline("feature-extraction", model=model, tokenizer=tokenizer) embeddings = SelfHostedEmbeddings( model_load_fn=get_pipeline, hardware=gpu model_reqs=["./", "torch", "transformers"], ) Example passing in a pipeline path:from langchain.embeddings import SelfHostedHFEmbeddings import runhouse as rh from transformers import pipeline gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") pipeline = pipeline(model="bert-base-uncased", task="feature-extraction") rh.blob(pickle.dumps(pipeline), path="models/pipeline.pkl").save().to(gpu, path="models") embeddings = SelfHostedHFEmbeddings.from_pipeline( pipeline="models/pipeline.pkl", hardware=gpu, model_reqs=["./", "torch", "transformers"], ) Init the pipeline with an auxiliary function. The load function must be in global scope to be imported and run on the server, i.e. in a module and not a REPL or closure. Then, initialize the remote inference function. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param hardware: Any = None¶ Remote hardware to send the inference function to. param inference_fn: Callable = <function _embed_documents>¶ Inference function to extract the embeddings on the remote hardware. param inference_kwargs: Any = None¶ Any kwargs to pass to the model’s inference function.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted.SelfHostedEmbeddings.html
c2f9bc9d3f9d-2
Any kwargs to pass to the model’s inference function. param load_fn_kwargs: Optional[dict] = None¶ Key word arguments to pass to the model load function. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_load_fn: Callable [Required]¶ Function to load the model remotely on the server. param model_reqs: List[str] = ['./', 'torch']¶ Requirements to install on hardware to inference the model. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to:
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted.SelfHostedEmbeddings.html
c2f9bc9d3f9d-3
API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted.SelfHostedEmbeddings.html
c2f9bc9d3f9d-4
Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. embed_documents(texts: List[str]) → List[List[float]][source]¶ Compute doc embeddings using a HuggingFace transformer model. Parameters texts – The list of texts to embed.s Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Compute query embeddings using a HuggingFace transformer model. Parameters text – The text to embed. Returns Embeddings for the text. classmethod from_pipeline(pipeline: Any, hardware: Any, model_reqs: Optional[List[str]] = None, device: int = 0, **kwargs: Any) → LLM¶ Init the SelfHostedPipeline from a pipeline object or string. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted.SelfHostedEmbeddings.html
c2f9bc9d3f9d-5
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted.SelfHostedEmbeddings.html
c2f9bc9d3f9d-6
Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted.SelfHostedEmbeddings.html
c2f9bc9d3f9d-7
to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.self_hosted.SelfHostedEmbeddings.html
0ff9b74a6633-0
langchain.embeddings.huggingface_hub.HuggingFaceHubEmbeddings¶ class langchain.embeddings.huggingface_hub.HuggingFaceHubEmbeddings(*, client: Any = None, repo_id: str = 'sentence-transformers/all-mpnet-base-v2', task: Optional[str] = 'feature-extraction', model_kwargs: Optional[dict] = None, huggingfacehub_api_token: Optional[str] = None)[source]¶ Bases: BaseModel, Embeddings Wrapper around HuggingFaceHub embedding models. To use, you should have the huggingface_hub python package installed, and the environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. Example from langchain.embeddings import HuggingFaceHubEmbeddings repo_id = "sentence-transformers/all-mpnet-base-v2" hf = HuggingFaceHubEmbeddings( repo_id=repo_id, task="feature-extraction", huggingfacehub_api_token="my-api-key", ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param huggingfacehub_api_token: Optional[str] = None¶ param model_kwargs: Optional[dict] = None¶ Key word arguments to pass to the model. param repo_id: str = 'sentence-transformers/all-mpnet-base-v2'¶ Model name to use. param task: Optional[str] = 'feature-extraction'¶ Task to call the model with. embed_documents(texts: List[str]) → List[List[float]][source]¶ Call out to HuggingFaceHub’s embedding endpoint for embedding search docs. Parameters texts – The list of texts to embed. Returns
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface_hub.HuggingFaceHubEmbeddings.html
0ff9b74a6633-1
Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Call out to HuggingFaceHub’s embedding endpoint for embedding query text. Parameters text – The text to embed. Returns Embeddings for the text. validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface_hub.HuggingFaceHubEmbeddings.html
6818466a460b-0
langchain.embeddings.sagemaker_endpoint.SagemakerEndpointEmbeddings¶ class langchain.embeddings.sagemaker_endpoint.SagemakerEndpointEmbeddings(*, client: Any = None, endpoint_name: str = '', region_name: str = '', credentials_profile_name: Optional[str] = None, content_handler: EmbeddingsContentHandler, model_kwargs: Optional[Dict] = None, endpoint_kwargs: Optional[Dict] = None)[source]¶ Bases: BaseModel, Embeddings Wrapper around custom Sagemaker Inference Endpoints. To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param content_handler: langchain.embeddings.sagemaker_endpoint.EmbeddingsContentHandler [Required]¶ The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. param credentials_profile_name: Optional[str] = None¶ The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used.
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.sagemaker_endpoint.SagemakerEndpointEmbeddings.html
6818466a460b-1
credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html param endpoint_kwargs: Optional[Dict] = None¶ Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> param endpoint_name: str = ''¶ The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region. param model_kwargs: Optional[Dict] = None¶ Key word arguments to pass to the model. param region_name: str = ''¶ The aws region where the Sagemaker model is deployed, eg. us-west-2. embed_documents(texts: List[str], chunk_size: int = 64) → List[List[float]][source]¶ Compute doc embeddings using a SageMaker Inference Endpoint. Parameters texts – The list of texts to embed. chunk_size – The chunk size defines how many input texts will be grouped together as request. If None, will use the chunk size specified by the class. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Compute query embeddings using a SageMaker inference endpoint. Parameters text – The text to embed. Returns Embeddings for the text. validator validate_environment  »  all fields[source]¶ Validate that AWS credentials to and python package exists in environment. model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶ extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.sagemaker_endpoint.SagemakerEndpointEmbeddings.html
d0e9a454038d-0
langchain.embeddings.huggingface.HuggingFaceEmbeddings¶ class langchain.embeddings.huggingface.HuggingFaceEmbeddings(*, client: Any = None, model_name: str = 'sentence-transformers/all-mpnet-base-v2', cache_folder: Optional[str] = None, model_kwargs: Dict[str, Any] = None, encode_kwargs: Dict[str, Any] = None)[source]¶ Bases: BaseModel, Embeddings Wrapper around sentence_transformers embedding models. To use, you should have the sentence_transformers python package installed. Example from langchain.embeddings import HuggingFaceEmbeddings model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': False} hf = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) Initialize the sentence_transformer. param cache_folder: Optional[str] = None¶ Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable. param encode_kwargs: Dict[str, Any] [Optional]¶ Key word arguments to pass when calling the encode method of the model. param model_kwargs: Dict[str, Any] [Optional]¶ Key word arguments to pass to the model. param model_name: str = 'sentence-transformers/all-mpnet-base-v2'¶ Model name to use. embed_documents(texts: List[str]) → List[List[float]][source]¶ Compute doc embeddings using a HuggingFace transformer model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Compute query embeddings using a HuggingFace transformer model. Parameters
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceEmbeddings.html
d0e9a454038d-1
Compute query embeddings using a HuggingFace transformer model. Parameters text – The text to embed. Returns Embeddings for the text. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.huggingface.HuggingFaceEmbeddings.html
7afc995f8f1a-0
langchain.embeddings.clarifai.ClarifaiEmbeddings¶ class langchain.embeddings.clarifai.ClarifaiEmbeddings(*, stub: Any = None, userDataObject: Any = None, model_id: Optional[str] = None, model_version_id: Optional[str] = None, app_id: Optional[str] = None, user_id: Optional[str] = None, pat: Optional[str] = None, api_base: str = 'https://api.clarifai.com')[source]¶ Bases: BaseModel, Embeddings Wrapper around Clarifai embedding models. To use, you should have the clarifai python package installed, and the environment variable CLARIFAI_PAT set with your personal access token or pass it as a named parameter to the constructor. Example from langchain.embeddings import ClarifaiEmbeddings clarifai = ClarifaiEmbeddings( model="embed-english-light-v2.0", clarifai_api_key="my-api-key" ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param api_base: str = 'https://api.clarifai.com'¶ param app_id: Optional[str] = None¶ Clarifai application id to use. param model_id: Optional[str] = None¶ Model id to use. param model_version_id: Optional[str] = None¶ Model version id to use. param pat: Optional[str] = None¶ param userDataObject: Any = None¶ param user_id: Optional[str] = None¶ Clarifai user id to use. embed_documents(texts: List[str]) → List[List[float]][source]¶ Call out to Clarifai’s embedding models. Parameters
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.clarifai.ClarifaiEmbeddings.html
7afc995f8f1a-1
Call out to Clarifai’s embedding models. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]¶ Call out to Clarifai’s embedding models. Parameters text – The text to embed. Returns Embeddings for the text. validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/embeddings/langchain.embeddings.clarifai.ClarifaiEmbeddings.html
309042aacc4c-0
langchain.env.get_runtime_environment¶ langchain.env.get_runtime_environment() → dict[source]¶ Get information about the environment.
https://api.python.langchain.com/en/latest/env/langchain.env.get_runtime_environment.html
f9856cfcd351-0
All modules for which code is available langchain.agents.agent langchain.agents.agent_toolkits.azure_cognitive_services.toolkit langchain.agents.agent_toolkits.base langchain.agents.agent_toolkits.csv.base langchain.agents.agent_toolkits.file_management.toolkit langchain.agents.agent_toolkits.gmail.toolkit langchain.agents.agent_toolkits.jira.toolkit langchain.agents.agent_toolkits.json.base langchain.agents.agent_toolkits.json.toolkit langchain.agents.agent_toolkits.nla.tool langchain.agents.agent_toolkits.nla.toolkit langchain.agents.agent_toolkits.office365.toolkit langchain.agents.agent_toolkits.openapi.base langchain.agents.agent_toolkits.openapi.planner langchain.agents.agent_toolkits.openapi.spec langchain.agents.agent_toolkits.openapi.toolkit langchain.agents.agent_toolkits.pandas.base langchain.agents.agent_toolkits.playwright.toolkit langchain.agents.agent_toolkits.powerbi.base langchain.agents.agent_toolkits.powerbi.chat_base langchain.agents.agent_toolkits.powerbi.toolkit langchain.agents.agent_toolkits.python.base langchain.agents.agent_toolkits.spark.base langchain.agents.agent_toolkits.spark_sql.base langchain.agents.agent_toolkits.spark_sql.toolkit langchain.agents.agent_toolkits.sql.base langchain.agents.agent_toolkits.sql.toolkit langchain.agents.agent_toolkits.vectorstore.base langchain.agents.agent_toolkits.vectorstore.toolkit langchain.agents.agent_toolkits.zapier.toolkit langchain.agents.agent_types langchain.agents.chat.base langchain.agents.chat.output_parser langchain.agents.conversational.base langchain.agents.conversational.output_parser langchain.agents.conversational_chat.base langchain.agents.conversational_chat.output_parser
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-1
langchain.agents.conversational_chat.output_parser langchain.agents.initialize langchain.agents.load_tools langchain.agents.loading langchain.agents.mrkl.base langchain.agents.mrkl.output_parser langchain.agents.openai_functions_agent.base langchain.agents.openai_functions_multi_agent.base langchain.agents.react.base langchain.agents.react.output_parser langchain.agents.schema langchain.agents.self_ask_with_search.base langchain.agents.self_ask_with_search.output_parser langchain.agents.structured_chat.base langchain.agents.structured_chat.output_parser langchain.agents.tools langchain.agents.utils langchain.cache langchain.callbacks.aim_callback langchain.callbacks.argilla_callback langchain.callbacks.arize_callback langchain.callbacks.arthur_callback langchain.callbacks.base langchain.callbacks.clearml_callback langchain.callbacks.comet_ml_callback langchain.callbacks.context_callback langchain.callbacks.file langchain.callbacks.flyte_callback langchain.callbacks.human langchain.callbacks.infino_callback langchain.callbacks.manager langchain.callbacks.mlflow_callback langchain.callbacks.openai_info langchain.callbacks.promptlayer_callback langchain.callbacks.stdout langchain.callbacks.streaming_aiter langchain.callbacks.streaming_aiter_final_only langchain.callbacks.streaming_stdout langchain.callbacks.streaming_stdout_final_only langchain.callbacks.streamlit.__init__ langchain.callbacks.streamlit.mutable_expander langchain.callbacks.streamlit.streamlit_callback_handler langchain.callbacks.tracers.base langchain.callbacks.tracers.evaluation langchain.callbacks.tracers.langchain langchain.callbacks.tracers.langchain_v1 langchain.callbacks.tracers.run_collector langchain.callbacks.tracers.schemas langchain.callbacks.tracers.stdout langchain.callbacks.tracers.wandb langchain.callbacks.utils langchain.callbacks.wandb_callback
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-2
langchain.callbacks.utils langchain.callbacks.wandb_callback langchain.callbacks.whylabs_callback langchain.chains.api.base langchain.chains.api.openapi.chain langchain.chains.api.openapi.requests_chain langchain.chains.api.openapi.response_chain langchain.chains.base langchain.chains.combine_documents.base langchain.chains.combine_documents.map_reduce langchain.chains.combine_documents.map_rerank langchain.chains.combine_documents.reduce langchain.chains.combine_documents.refine langchain.chains.combine_documents.stuff langchain.chains.constitutional_ai.base langchain.chains.constitutional_ai.models langchain.chains.conversation.base langchain.chains.conversational_retrieval.base langchain.chains.flare.base langchain.chains.flare.prompts langchain.chains.graph_qa.base langchain.chains.graph_qa.cypher langchain.chains.graph_qa.hugegraph langchain.chains.graph_qa.kuzu langchain.chains.graph_qa.nebulagraph langchain.chains.graph_qa.sparql langchain.chains.hyde.base langchain.chains.llm langchain.chains.llm_bash.base langchain.chains.llm_bash.prompt langchain.chains.llm_checker.base langchain.chains.llm_math.base langchain.chains.llm_requests langchain.chains.llm_summarization_checker.base langchain.chains.loading langchain.chains.mapreduce langchain.chains.moderation langchain.chains.natbot.base langchain.chains.natbot.crawler langchain.chains.openai_functions.base langchain.chains.openai_functions.citation_fuzzy_match langchain.chains.openai_functions.extraction langchain.chains.openai_functions.openapi langchain.chains.openai_functions.qa_with_structure
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-3
langchain.chains.openai_functions.qa_with_structure langchain.chains.openai_functions.tagging langchain.chains.openai_functions.utils langchain.chains.pal.base langchain.chains.prompt_selector langchain.chains.qa_generation.base langchain.chains.qa_with_sources.base langchain.chains.qa_with_sources.loading langchain.chains.qa_with_sources.retrieval langchain.chains.qa_with_sources.vector_db langchain.chains.query_constructor.base langchain.chains.query_constructor.ir langchain.chains.query_constructor.parser langchain.chains.query_constructor.schema langchain.chains.question_answering.__init__ langchain.chains.retrieval_qa.base langchain.chains.router.base langchain.chains.router.embedding_router langchain.chains.router.llm_router langchain.chains.router.multi_prompt langchain.chains.router.multi_retrieval_qa langchain.chains.sequential langchain.chains.sql_database.base langchain.chains.summarize.__init__ langchain.chains.transform langchain.chat_models.anthropic langchain.chat_models.azure_openai langchain.chat_models.base langchain.chat_models.fake langchain.chat_models.google_palm langchain.chat_models.human langchain.chat_models.jinachat langchain.chat_models.openai langchain.chat_models.promptlayer_openai langchain.chat_models.vertexai langchain.client.runner_utils langchain.docstore.arbitrary_fn langchain.docstore.base langchain.docstore.in_memory langchain.docstore.wikipedia langchain.document_loaders.acreom langchain.document_loaders.airbyte_json langchain.document_loaders.airtable langchain.document_loaders.apify_dataset langchain.document_loaders.arxiv langchain.document_loaders.azlyrics langchain.document_loaders.azure_blob_storage_container
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-4
langchain.document_loaders.azlyrics langchain.document_loaders.azure_blob_storage_container langchain.document_loaders.azure_blob_storage_file langchain.document_loaders.base langchain.document_loaders.bibtex langchain.document_loaders.bigquery langchain.document_loaders.bilibili langchain.document_loaders.blackboard langchain.document_loaders.blob_loaders.file_system langchain.document_loaders.blob_loaders.schema langchain.document_loaders.blob_loaders.youtube_audio langchain.document_loaders.blockchain langchain.document_loaders.brave_search langchain.document_loaders.chatgpt langchain.document_loaders.college_confidential langchain.document_loaders.confluence langchain.document_loaders.conllu langchain.document_loaders.csv_loader langchain.document_loaders.cube_semantic langchain.document_loaders.dataframe langchain.document_loaders.diffbot langchain.document_loaders.directory langchain.document_loaders.discord langchain.document_loaders.docugami langchain.document_loaders.duckdb_loader langchain.document_loaders.email langchain.document_loaders.embaas langchain.document_loaders.epub langchain.document_loaders.evernote langchain.document_loaders.excel langchain.document_loaders.facebook_chat langchain.document_loaders.fauna langchain.document_loaders.figma langchain.document_loaders.gcs_directory langchain.document_loaders.gcs_file langchain.document_loaders.generic langchain.document_loaders.git langchain.document_loaders.gitbook langchain.document_loaders.github langchain.document_loaders.googledrive langchain.document_loaders.gutenberg langchain.document_loaders.helpers langchain.document_loaders.hn langchain.document_loaders.html langchain.document_loaders.html_bs langchain.document_loaders.hugging_face_dataset
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-5
langchain.document_loaders.html_bs langchain.document_loaders.hugging_face_dataset langchain.document_loaders.ifixit langchain.document_loaders.image langchain.document_loaders.image_captions langchain.document_loaders.imsdb langchain.document_loaders.iugu langchain.document_loaders.joplin langchain.document_loaders.json_loader langchain.document_loaders.larksuite langchain.document_loaders.markdown langchain.document_loaders.mastodon langchain.document_loaders.max_compute langchain.document_loaders.mediawikidump langchain.document_loaders.merge langchain.document_loaders.mhtml langchain.document_loaders.modern_treasury langchain.document_loaders.notebook langchain.document_loaders.notion langchain.document_loaders.notiondb langchain.document_loaders.obsidian langchain.document_loaders.odt langchain.document_loaders.onedrive langchain.document_loaders.onedrive_file langchain.document_loaders.open_city_data langchain.document_loaders.org_mode langchain.document_loaders.parsers.audio langchain.document_loaders.parsers.generic langchain.document_loaders.parsers.grobid langchain.document_loaders.parsers.html.bs4 langchain.document_loaders.parsers.language.code_segmenter langchain.document_loaders.parsers.language.javascript langchain.document_loaders.parsers.language.language_parser langchain.document_loaders.parsers.language.python langchain.document_loaders.parsers.pdf langchain.document_loaders.parsers.registry langchain.document_loaders.parsers.txt langchain.document_loaders.pdf langchain.document_loaders.powerpoint langchain.document_loaders.psychic langchain.document_loaders.pyspark_dataframe langchain.document_loaders.python langchain.document_loaders.readthedocs langchain.document_loaders.recursive_url_loader langchain.document_loaders.reddit
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-6
langchain.document_loaders.recursive_url_loader langchain.document_loaders.reddit langchain.document_loaders.roam langchain.document_loaders.rst langchain.document_loaders.rtf langchain.document_loaders.s3_directory langchain.document_loaders.s3_file langchain.document_loaders.sitemap langchain.document_loaders.slack_directory langchain.document_loaders.snowflake_loader langchain.document_loaders.spreedly langchain.document_loaders.srt langchain.document_loaders.stripe langchain.document_loaders.telegram langchain.document_loaders.tencent_cos_directory langchain.document_loaders.tencent_cos_file langchain.document_loaders.text langchain.document_loaders.tomarkdown langchain.document_loaders.toml langchain.document_loaders.trello langchain.document_loaders.twitter langchain.document_loaders.unstructured langchain.document_loaders.url langchain.document_loaders.url_playwright langchain.document_loaders.url_selenium langchain.document_loaders.weather langchain.document_loaders.web_base langchain.document_loaders.whatsapp_chat langchain.document_loaders.wikipedia langchain.document_loaders.word_document langchain.document_loaders.xml langchain.document_loaders.youtube langchain.document_transformers langchain.embeddings.aleph_alpha langchain.embeddings.base langchain.embeddings.bedrock langchain.embeddings.clarifai langchain.embeddings.cohere langchain.embeddings.dashscope langchain.embeddings.deepinfra langchain.embeddings.elasticsearch langchain.embeddings.embaas langchain.embeddings.fake langchain.embeddings.google_palm langchain.embeddings.huggingface langchain.embeddings.huggingface_hub langchain.embeddings.jina langchain.embeddings.llamacpp langchain.embeddings.minimax langchain.embeddings.modelscope_hub
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-7
langchain.embeddings.minimax langchain.embeddings.modelscope_hub langchain.embeddings.mosaicml langchain.embeddings.octoai_embeddings langchain.embeddings.openai langchain.embeddings.sagemaker_endpoint langchain.embeddings.self_hosted langchain.embeddings.self_hosted_hugging_face langchain.embeddings.spacy_embeddings langchain.embeddings.tensorflow_hub langchain.embeddings.vertexai langchain.env langchain.evaluation.agents.trajectory_eval_chain langchain.evaluation.comparison.eval_chain langchain.evaluation.criteria.eval_chain langchain.evaluation.embedding_distance.base langchain.evaluation.loading langchain.evaluation.qa.eval_chain langchain.evaluation.qa.generate_chain langchain.evaluation.run_evaluators.base langchain.evaluation.run_evaluators.implementations langchain.evaluation.run_evaluators.loading langchain.evaluation.run_evaluators.string_run_evaluator langchain.evaluation.schema langchain.evaluation.string_distance.base langchain.example_generator langchain.experimental.autonomous_agents.autogpt.memory langchain.experimental.autonomous_agents.autogpt.output_parser langchain.experimental.autonomous_agents.autogpt.prompt langchain.experimental.autonomous_agents.autogpt.prompt_generator langchain.experimental.autonomous_agents.baby_agi.baby_agi langchain.experimental.autonomous_agents.baby_agi.task_creation langchain.experimental.autonomous_agents.baby_agi.task_execution langchain.experimental.autonomous_agents.baby_agi.task_prioritization langchain.experimental.generative_agents.generative_agent langchain.experimental.generative_agents.memory langchain.experimental.llms.jsonformer_decoder langchain.experimental.llms.rellm_decoder langchain.experimental.plan_and_execute.agent_executor langchain.experimental.plan_and_execute.executors.agent_executor langchain.experimental.plan_and_execute.executors.base langchain.experimental.plan_and_execute.planners.base
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-8
langchain.experimental.plan_and_execute.executors.base langchain.experimental.plan_and_execute.planners.base langchain.experimental.plan_and_execute.planners.chat_planner langchain.experimental.plan_and_execute.schema langchain.formatting langchain.graphs.networkx_graph langchain.indexes.graph langchain.indexes.vectorstore langchain.input langchain.llms.ai21 langchain.llms.aleph_alpha langchain.llms.amazon_api_gateway langchain.llms.anthropic langchain.llms.anyscale langchain.llms.aviary langchain.llms.azureml_endpoint langchain.llms.bananadev langchain.llms.base langchain.llms.baseten langchain.llms.beam langchain.llms.bedrock langchain.llms.cerebriumai langchain.llms.clarifai langchain.llms.cohere langchain.llms.ctransformers langchain.llms.databricks langchain.llms.deepinfra langchain.llms.fake langchain.llms.forefrontai langchain.llms.google_palm langchain.llms.gooseai langchain.llms.gpt4all langchain.llms.huggingface_endpoint langchain.llms.huggingface_hub langchain.llms.huggingface_pipeline langchain.llms.huggingface_text_gen_inference langchain.llms.human langchain.llms.llamacpp langchain.llms.loading langchain.llms.manifest langchain.llms.modal langchain.llms.mosaicml langchain.llms.nlpcloud langchain.llms.octoai_endpoint langchain.llms.openai langchain.llms.openllm langchain.llms.openlm langchain.llms.petals langchain.llms.pipelineai langchain.llms.predictionguard
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-9
langchain.llms.pipelineai langchain.llms.predictionguard langchain.llms.promptlayer_openai langchain.llms.replicate langchain.llms.rwkv langchain.llms.sagemaker_endpoint langchain.llms.self_hosted langchain.llms.self_hosted_hugging_face langchain.llms.stochasticai langchain.llms.textgen langchain.llms.utils langchain.llms.vertexai langchain.llms.writer langchain.load.dump langchain.load.load langchain.load.serializable langchain.math_utils langchain.memory.buffer langchain.memory.buffer_window langchain.memory.chat_memory langchain.memory.chat_message_histories.cassandra langchain.memory.chat_message_histories.cosmos_db langchain.memory.chat_message_histories.dynamodb langchain.memory.chat_message_histories.file langchain.memory.chat_message_histories.firestore langchain.memory.chat_message_histories.in_memory langchain.memory.chat_message_histories.momento langchain.memory.chat_message_histories.mongodb langchain.memory.chat_message_histories.postgres langchain.memory.chat_message_histories.redis langchain.memory.chat_message_histories.sql langchain.memory.chat_message_histories.zep langchain.memory.combined langchain.memory.entity langchain.memory.kg langchain.memory.motorhead_memory langchain.memory.readonly langchain.memory.simple langchain.memory.summary langchain.memory.summary_buffer langchain.memory.token_buffer langchain.memory.utils langchain.memory.vectorstore langchain.output_parsers.boolean langchain.output_parsers.combining langchain.output_parsers.datetime langchain.output_parsers.enum langchain.output_parsers.fix langchain.output_parsers.json langchain.output_parsers.list langchain.output_parsers.loading langchain.output_parsers.openai_functions langchain.output_parsers.pydantic
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-10
langchain.output_parsers.openai_functions langchain.output_parsers.pydantic langchain.output_parsers.rail_parser langchain.output_parsers.regex langchain.output_parsers.regex_dict langchain.output_parsers.retry langchain.output_parsers.structured langchain.prompts.base langchain.prompts.chat langchain.prompts.example_selector.base langchain.prompts.example_selector.length_based langchain.prompts.example_selector.ngram_overlap langchain.prompts.example_selector.semantic_similarity langchain.prompts.few_shot langchain.prompts.few_shot_with_templates langchain.prompts.loading langchain.prompts.pipeline langchain.prompts.prompt langchain.requests langchain.retrievers.arxiv langchain.retrievers.azure_cognitive_search langchain.retrievers.chaindesk langchain.retrievers.chatgpt_plugin_retriever langchain.retrievers.contextual_compression langchain.retrievers.databerry langchain.retrievers.docarray langchain.retrievers.document_compressors.base langchain.retrievers.document_compressors.chain_extract langchain.retrievers.document_compressors.chain_filter langchain.retrievers.document_compressors.cohere_rerank langchain.retrievers.document_compressors.embeddings_filter langchain.retrievers.elastic_search_bm25 langchain.retrievers.kendra langchain.retrievers.knn langchain.retrievers.llama_index langchain.retrievers.merger_retriever langchain.retrievers.metal langchain.retrievers.milvus langchain.retrievers.multi_query langchain.retrievers.pinecone_hybrid_search langchain.retrievers.pubmed langchain.retrievers.remote_retriever langchain.retrievers.self_query.base langchain.retrievers.self_query.chroma
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-11
langchain.retrievers.self_query.base langchain.retrievers.self_query.chroma langchain.retrievers.self_query.myscale langchain.retrievers.self_query.pinecone langchain.retrievers.self_query.qdrant langchain.retrievers.self_query.weaviate langchain.retrievers.svm langchain.retrievers.tfidf langchain.retrievers.time_weighted_retriever langchain.retrievers.vespa_retriever langchain.retrievers.weaviate_hybrid_search langchain.retrievers.wikipedia langchain.retrievers.zep langchain.retrievers.zilliz langchain.schema.agent langchain.schema.document langchain.schema.language_model langchain.schema.memory langchain.schema.messages langchain.schema.output langchain.schema.output_parser langchain.schema.prompt langchain.schema.prompt_template langchain.schema.retriever langchain.server langchain.sql_database langchain.text_splitter langchain.tools.arxiv.tool langchain.tools.azure_cognitive_services.form_recognizer langchain.tools.azure_cognitive_services.image_analysis langchain.tools.azure_cognitive_services.speech2text langchain.tools.azure_cognitive_services.text2speech langchain.tools.azure_cognitive_services.utils langchain.tools.base langchain.tools.bing_search.tool langchain.tools.brave_search.tool langchain.tools.convert_to_openai langchain.tools.dataforseo_api_search.tool langchain.tools.ddg_search.tool langchain.tools.file_management.copy langchain.tools.file_management.delete langchain.tools.file_management.file_search langchain.tools.file_management.list_dir langchain.tools.file_management.move langchain.tools.file_management.read langchain.tools.file_management.utils langchain.tools.file_management.write langchain.tools.gmail.base langchain.tools.gmail.create_draft langchain.tools.gmail.get_message
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-12
langchain.tools.gmail.base langchain.tools.gmail.create_draft langchain.tools.gmail.get_message langchain.tools.gmail.get_thread langchain.tools.gmail.search langchain.tools.gmail.send_message langchain.tools.gmail.utils langchain.tools.google_places.tool langchain.tools.google_search.tool langchain.tools.google_serper.tool langchain.tools.graphql.tool langchain.tools.human.tool langchain.tools.ifttt langchain.tools.interaction.tool langchain.tools.jira.tool langchain.tools.json.tool langchain.tools.metaphor_search.tool langchain.tools.office365.base langchain.tools.office365.create_draft_message langchain.tools.office365.events_search langchain.tools.office365.messages_search langchain.tools.office365.send_event langchain.tools.office365.send_message langchain.tools.office365.utils langchain.tools.openapi.utils.api_models langchain.tools.openweathermap.tool langchain.tools.playwright.base langchain.tools.playwright.click langchain.tools.playwright.current_page langchain.tools.playwright.extract_hyperlinks langchain.tools.playwright.extract_text langchain.tools.playwright.get_elements langchain.tools.playwright.navigate langchain.tools.playwright.navigate_back langchain.tools.playwright.utils langchain.tools.plugin langchain.tools.powerbi.tool langchain.tools.pubmed.tool langchain.tools.python.tool langchain.tools.requests.tool langchain.tools.scenexplain.tool langchain.tools.searx_search.tool langchain.tools.shell.tool langchain.tools.sleep.tool langchain.tools.spark_sql.tool langchain.tools.sql_database.tool langchain.tools.steamship_image_generation.tool langchain.tools.steamship_image_generation.utils langchain.tools.vectorstore.tool langchain.tools.wikipedia.tool langchain.tools.wolfram_alpha.tool langchain.tools.youtube.search langchain.tools.zapier.tool langchain.utilities.apify langchain.utilities.arxiv
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-13
langchain.tools.zapier.tool langchain.utilities.apify langchain.utilities.arxiv langchain.utilities.awslambda langchain.utilities.bibtex langchain.utilities.bing_search langchain.utilities.brave_search langchain.utilities.dataforseo_api_search langchain.utilities.duckduckgo_search langchain.utilities.google_places_api langchain.utilities.google_search langchain.utilities.google_serper langchain.utilities.graphql langchain.utilities.jira langchain.utilities.loading langchain.utilities.metaphor_search langchain.utilities.openapi langchain.utilities.openweathermap langchain.utilities.powerbi langchain.utilities.pupmed langchain.utilities.python langchain.utilities.scenexplain langchain.utilities.searx_search langchain.utilities.serpapi langchain.utilities.twilio langchain.utilities.vertexai langchain.utilities.wikipedia langchain.utilities.wolfram_alpha langchain.utilities.zapier langchain.utils langchain.vectorstores.alibabacloud_opensearch langchain.vectorstores.analyticdb langchain.vectorstores.annoy langchain.vectorstores.atlas langchain.vectorstores.awadb langchain.vectorstores.azuresearch langchain.vectorstores.base langchain.vectorstores.cassandra langchain.vectorstores.chroma langchain.vectorstores.clarifai langchain.vectorstores.clickhouse langchain.vectorstores.deeplake langchain.vectorstores.docarray.base langchain.vectorstores.docarray.hnsw langchain.vectorstores.docarray.in_memory langchain.vectorstores.elastic_vector_search langchain.vectorstores.faiss langchain.vectorstores.hologres langchain.vectorstores.lancedb langchain.vectorstores.marqo langchain.vectorstores.matching_engine langchain.vectorstores.milvus langchain.vectorstores.mongodb_atlas langchain.vectorstores.myscale langchain.vectorstores.opensearch_vector_search
https://api.python.langchain.com/en/latest/_modules/index.html
f9856cfcd351-14
langchain.vectorstores.myscale langchain.vectorstores.opensearch_vector_search langchain.vectorstores.pgembedding langchain.vectorstores.pgvector langchain.vectorstores.pinecone langchain.vectorstores.qdrant langchain.vectorstores.redis langchain.vectorstores.rocksetdb langchain.vectorstores.singlestoredb langchain.vectorstores.sklearn langchain.vectorstores.starrocks langchain.vectorstores.supabase langchain.vectorstores.tair langchain.vectorstores.tigris langchain.vectorstores.typesense langchain.vectorstores.utils langchain.vectorstores.vectara langchain.vectorstores.weaviate langchain.vectorstores.zilliz pydantic.config pydantic.env_settings pydantic.utils
https://api.python.langchain.com/en/latest/_modules/index.html
ee466c2e94b0-0
Source code for langchain.formatting """Utilities for formatting strings.""" from string import Formatter from typing import Any, List, Mapping, Sequence, Union [docs]class StrictFormatter(Formatter): """A subclass of formatter that checks for extra keys.""" [docs] def check_unused_args( self, used_args: Sequence[Union[int, str]], args: Sequence, kwargs: Mapping[str, Any], ) -> None: """Check to see if extra parameters are passed.""" extra = set(kwargs).difference(used_args) if extra: raise KeyError(extra) [docs] def vformat( self, format_string: str, args: Sequence, kwargs: Mapping[str, Any] ) -> str: """Check that no arguments are provided.""" if len(args) > 0: raise ValueError( "No arguments should be provided, " "everything should be passed as keyword arguments." ) return super().vformat(format_string, args, kwargs) [docs] def validate_input_variables( self, format_string: str, input_variables: List[str] ) -> None: dummy_inputs = {input_variable: "foo" for input_variable in input_variables} super().format(format_string, **dummy_inputs) formatter = StrictFormatter()
https://api.python.langchain.com/en/latest/_modules/langchain/formatting.html
aea7c4a66cf0-0
Source code for langchain.server """Script to run langchain-server locally using docker-compose.""" import subprocess from pathlib import Path from langchainplus_sdk.cli.main import get_docker_compose_command [docs]def main() -> None: """Run the langchain server locally.""" p = Path(__file__).absolute().parent / "docker-compose.yaml" docker_compose_command = get_docker_compose_command() subprocess.run([*docker_compose_command, "-f", str(p), "pull"]) subprocess.run([*docker_compose_command, "-f", str(p), "up"]) if __name__ == "__main__": main()
https://api.python.langchain.com/en/latest/_modules/langchain/server.html
f006edbd588c-0
Source code for langchain.document_transformers """Transform documents""" from typing import Any, Callable, List, Sequence import numpy as np from pydantic import BaseModel, Field from langchain.embeddings.base import Embeddings from langchain.math_utils import cosine_similarity from langchain.schema import BaseDocumentTransformer, Document class _DocumentWithState(Document): """Wrapper for a document that includes arbitrary state.""" state: dict = Field(default_factory=dict) """State associated with the document.""" def to_document(self) -> Document: """Convert the DocumentWithState to a Document.""" return Document(page_content=self.page_content, metadata=self.metadata) @classmethod def from_document(cls, doc: Document) -> "_DocumentWithState": """Create a DocumentWithState from a Document.""" if isinstance(doc, cls): return doc return cls(page_content=doc.page_content, metadata=doc.metadata) [docs]def get_stateful_documents( documents: Sequence[Document], ) -> Sequence[_DocumentWithState]: """Convert a list of documents to a list of documents with state. Args: documents: The documents to convert. Returns: A list of documents with state. """ return [_DocumentWithState.from_document(doc) for doc in documents] def _filter_similar_embeddings( embedded_documents: List[List[float]], similarity_fn: Callable, threshold: float ) -> List[int]: """Filter redundant documents based on the similarity of their embeddings.""" similarity = np.tril(similarity_fn(embedded_documents, embedded_documents), k=-1) redundant = np.where(similarity > threshold) redundant_stacked = np.column_stack(redundant)
https://api.python.langchain.com/en/latest/_modules/langchain/document_transformers.html
f006edbd588c-1
redundant_stacked = np.column_stack(redundant) redundant_sorted = np.argsort(similarity[redundant])[::-1] included_idxs = set(range(len(embedded_documents))) for first_idx, second_idx in redundant_stacked[redundant_sorted]: if first_idx in included_idxs and second_idx in included_idxs: # Default to dropping the second document of any highly similar pair. included_idxs.remove(second_idx) return list(sorted(included_idxs)) def _get_embeddings_from_stateful_docs( embeddings: Embeddings, documents: Sequence[_DocumentWithState] ) -> List[List[float]]: if len(documents) and "embedded_doc" in documents[0].state: embedded_documents = [doc.state["embedded_doc"] for doc in documents] else: embedded_documents = embeddings.embed_documents( [d.page_content for d in documents] ) for doc, embedding in zip(documents, embedded_documents): doc.state["embedded_doc"] = embedding return embedded_documents def _filter_cluster_embeddings( embedded_documents: List[List[float]], num_clusters: int, num_closest: int, random_state: int, remove_duplicates: bool, ) -> List[int]: """Filter documents based on proximity of their embeddings to clusters.""" try: from sklearn.cluster import KMeans except ImportError: raise ValueError( "sklearn package not found, please install it with " "`pip install scikit-learn`" ) kmeans = KMeans(n_clusters=num_clusters, random_state=random_state).fit( embedded_documents ) closest_indices = [] # Loop through the number of clusters you have
https://api.python.langchain.com/en/latest/_modules/langchain/document_transformers.html
f006edbd588c-2
) closest_indices = [] # Loop through the number of clusters you have for i in range(num_clusters): # Get the list of distances from that particular cluster center distances = np.linalg.norm( embedded_documents - kmeans.cluster_centers_[i], axis=1 ) # Find the indices of the two unique closest ones # (using argsort to find the smallest 2 distances) if remove_duplicates: # Only add not duplicated vectors. closest_indices_sorted = [ x for x in np.argsort(distances)[:num_closest] if x not in closest_indices ] else: # Skip duplicates and add the next closest vector. closest_indices_sorted = [ x for x in np.argsort(distances) if x not in closest_indices ][:num_closest] # Append that position closest indices list closest_indices.extend(closest_indices_sorted) return closest_indices [docs]class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel): """Filter that drops redundant documents by comparing their embeddings.""" embeddings: Embeddings """Embeddings to use for embedding document contents.""" similarity_fn: Callable = cosine_similarity """Similarity function for comparing documents. Function expected to take as input two matrices (List[List[float]]) and return a matrix of scores where higher values indicate greater similarity.""" similarity_threshold: float = 0.95 """Threshold for determining when two documents are similar enough to be considered redundant.""" [docs] class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def transform_documents( self, documents: Sequence[Document], **kwargs: Any
https://api.python.langchain.com/en/latest/_modules/langchain/document_transformers.html
f006edbd588c-3
self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Filter down documents.""" stateful_documents = get_stateful_documents(documents) embedded_documents = _get_embeddings_from_stateful_docs( self.embeddings, stateful_documents ) included_idxs = _filter_similar_embeddings( embedded_documents, self.similarity_fn, self.similarity_threshold ) return [stateful_documents[i] for i in sorted(included_idxs)] [docs] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError [docs]class EmbeddingsClusteringFilter(BaseDocumentTransformer, BaseModel): """Perform K-means clustering on document vectors. Returns an arbitrary number of documents closest to center.""" embeddings: Embeddings """Embeddings to use for embedding document contents.""" num_clusters: int = 5 """Number of clusters. Groups of documents with similar meaning.""" num_closest: int = 1 """The number of closest vectors to return for each cluster center.""" random_state: int = 42 """Controls the random number generator used to initialize the cluster centroids. If you set the random_state parameter to None, the KMeans algorithm will use a random number generator that is seeded with the current time. This means that the results of the KMeans algorithm will be different each time you run it.""" sorted: bool = False """By default results are re-ordered "grouping" them by cluster, if sorted is true result will be ordered by the original position from the retriever""" remove_duplicates = False
https://api.python.langchain.com/en/latest/_modules/langchain/document_transformers.html
f006edbd588c-4
remove_duplicates = False """ By default duplicated results are skipped and replaced by the next closest vector in the cluster. If remove_duplicates is true no replacement will be done: This could dramatically reduce results when there is a lot of overlap beetween clusters. """ [docs] class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Filter down documents.""" stateful_documents = get_stateful_documents(documents) embedded_documents = _get_embeddings_from_stateful_docs( self.embeddings, stateful_documents ) included_idxs = _filter_cluster_embeddings( embedded_documents, self.num_clusters, self.num_closest, self.random_state, self.remove_duplicates, ) results = sorted(included_idxs) if self.sorted else included_idxs return [stateful_documents[i] for i in results] [docs] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError
https://api.python.langchain.com/en/latest/_modules/langchain/document_transformers.html
88e6d621d2c5-0
Source code for langchain.requests """Lightweight wrapper around requests library, with async support.""" from contextlib import asynccontextmanager from typing import Any, AsyncGenerator, Dict, Optional import aiohttp import requests from pydantic import BaseModel, Extra [docs]class Requests(BaseModel): """Wrapper around requests to handle auth and async. The main purpose of this wrapper is to handle authentication (by saving headers) and enable easy async methods on the same base object. """ headers: Optional[Dict[str, str]] = None aiosession: Optional[aiohttp.ClientSession] = None [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True [docs] def get(self, url: str, **kwargs: Any) -> requests.Response: """GET the URL and return the text.""" return requests.get(url, headers=self.headers, **kwargs) [docs] def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: """POST to the URL and return the text.""" return requests.post(url, json=data, headers=self.headers, **kwargs) [docs] def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: """PATCH the URL and return the text.""" return requests.patch(url, json=data, headers=self.headers, **kwargs) [docs] def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: """PUT the URL and return the text.""" return requests.put(url, json=data, headers=self.headers, **kwargs)
https://api.python.langchain.com/en/latest/_modules/langchain/requests.html
88e6d621d2c5-1
return requests.put(url, json=data, headers=self.headers, **kwargs) [docs] def delete(self, url: str, **kwargs: Any) -> requests.Response: """DELETE the URL and return the text.""" return requests.delete(url, headers=self.headers, **kwargs) @asynccontextmanager async def _arequest( self, method: str, url: str, **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """Make an async request.""" if not self.aiosession: async with aiohttp.ClientSession() as session: async with session.request( method, url, headers=self.headers, **kwargs ) as response: yield response else: async with self.aiosession.request( method, url, headers=self.headers, **kwargs ) as response: yield response [docs] @asynccontextmanager async def aget( self, url: str, **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """GET the URL and return the text asynchronously.""" async with self._arequest("GET", url, **kwargs) as response: yield response [docs] @asynccontextmanager async def apost( self, url: str, data: Dict[str, Any], **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """POST to the URL and return the text asynchronously.""" async with self._arequest("POST", url, json=data, **kwargs) as response: yield response [docs] @asynccontextmanager async def apatch(
https://api.python.langchain.com/en/latest/_modules/langchain/requests.html
88e6d621d2c5-2
yield response [docs] @asynccontextmanager async def apatch( self, url: str, data: Dict[str, Any], **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """PATCH the URL and return the text asynchronously.""" async with self._arequest("PATCH", url, json=data, **kwargs) as response: yield response [docs] @asynccontextmanager async def aput( self, url: str, data: Dict[str, Any], **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """PUT the URL and return the text asynchronously.""" async with self._arequest("PUT", url, json=data, **kwargs) as response: yield response [docs] @asynccontextmanager async def adelete( self, url: str, **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """DELETE the URL and return the text asynchronously.""" async with self._arequest("DELETE", url, **kwargs) as response: yield response [docs]class TextRequestsWrapper(BaseModel): """Lightweight wrapper around requests library. The main purpose of this wrapper is to always return a text output. """ headers: Optional[Dict[str, str]] = None aiosession: Optional[aiohttp.ClientSession] = None [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def requests(self) -> Requests: return Requests(headers=self.headers, aiosession=self.aiosession)
https://api.python.langchain.com/en/latest/_modules/langchain/requests.html
88e6d621d2c5-3
return Requests(headers=self.headers, aiosession=self.aiosession) [docs] def get(self, url: str, **kwargs: Any) -> str: """GET the URL and return the text.""" return self.requests.get(url, **kwargs).text [docs] def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """POST to the URL and return the text.""" return self.requests.post(url, data, **kwargs).text [docs] def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PATCH the URL and return the text.""" return self.requests.patch(url, data, **kwargs).text [docs] def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PUT the URL and return the text.""" return self.requests.put(url, data, **kwargs).text [docs] def delete(self, url: str, **kwargs: Any) -> str: """DELETE the URL and return the text.""" return self.requests.delete(url, **kwargs).text [docs] async def aget(self, url: str, **kwargs: Any) -> str: """GET the URL and return the text asynchronously.""" async with self.requests.aget(url, **kwargs) as response: return await response.text() [docs] async def apost(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """POST to the URL and return the text asynchronously.""" async with self.requests.apost(url, data, **kwargs) as response: return await response.text()
https://api.python.langchain.com/en/latest/_modules/langchain/requests.html
88e6d621d2c5-4
return await response.text() [docs] async def apatch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PATCH the URL and return the text asynchronously.""" async with self.requests.apatch(url, data, **kwargs) as response: return await response.text() [docs] async def aput(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PUT the URL and return the text asynchronously.""" async with self.requests.aput(url, data, **kwargs) as response: return await response.text() [docs] async def adelete(self, url: str, **kwargs: Any) -> str: """DELETE the URL and return the text asynchronously.""" async with self.requests.adelete(url, **kwargs) as response: return await response.text() # For backwards compatibility RequestsWrapper = TextRequestsWrapper
https://api.python.langchain.com/en/latest/_modules/langchain/requests.html
ca5dfb8d2c94-0
Source code for langchain.utils """Generic utility functions.""" import contextlib import datetime import importlib import os from importlib.metadata import version from typing import Any, Callable, Dict, List, Optional, Tuple from packaging.version import parse from requests import HTTPError, Response [docs]def get_from_dict_or_env( data: Dict[str, Any], key: str, env_key: str, default: Optional[str] = None ) -> str: """Get a value from a dictionary or an environment variable.""" if key in data and data[key]: return data[key] else: return get_from_env(key, env_key, default=default) [docs]def get_from_env(key: str, env_key: str, default: Optional[str] = None) -> str: """Get a value from a dictionary or an environment variable.""" if env_key in os.environ and os.environ[env_key]: return os.environ[env_key] elif default is not None: return default else: raise ValueError( f"Did not find {key}, please add an environment variable" f" `{env_key}` which contains it, or pass" f" `{key}` as a named parameter." ) [docs]def xor_args(*arg_groups: Tuple[str, ...]) -> Callable: """Validate specified keyword args are mutually exclusive.""" def decorator(func: Callable) -> Callable: def wrapper(*args: Any, **kwargs: Any) -> Callable: """Validate exactly one arg in each group is not None.""" counts = [ sum(1 for arg in arg_group if kwargs.get(arg) is not None) for arg_group in arg_groups ]
https://api.python.langchain.com/en/latest/_modules/langchain/utils.html
ca5dfb8d2c94-1
for arg_group in arg_groups ] invalid_groups = [i for i, count in enumerate(counts) if count != 1] if invalid_groups: invalid_group_names = [", ".join(arg_groups[i]) for i in invalid_groups] raise ValueError( "Exactly one argument in each of the following" " groups must be defined:" f" {', '.join(invalid_group_names)}" ) return func(*args, **kwargs) return wrapper return decorator [docs]def raise_for_status_with_text(response: Response) -> None: """Raise an error with the response text.""" try: response.raise_for_status() except HTTPError as e: raise ValueError(response.text) from e [docs]def stringify_value(val: Any) -> str: """Stringify a value. Args: val: The value to stringify. Returns: str: The stringified value. """ if isinstance(val, str): return val elif isinstance(val, dict): return "\n" + stringify_dict(val) elif isinstance(val, list): return "\n".join(stringify_value(v) for v in val) else: return str(val) [docs]def stringify_dict(data: dict) -> str: """Stringify a dictionary. Args: data: The dictionary to stringify. Returns: str: The stringified dictionary. """ text = "" for key, value in data.items(): text += key + ": " + stringify_value(value) + "\n" return text [docs]def comma_list(items: List[Any]) -> str:
https://api.python.langchain.com/en/latest/_modules/langchain/utils.html
ca5dfb8d2c94-2
return text [docs]def comma_list(items: List[Any]) -> str: return ", ".join(str(item) for item in items) [docs]@contextlib.contextmanager def mock_now(dt_value): # type: ignore """Context manager for mocking out datetime.now() in unit tests. Example: with mock_now(datetime.datetime(2011, 2, 3, 10, 11)): assert datetime.datetime.now() == datetime.datetime(2011, 2, 3, 10, 11) """ class MockDateTime(datetime.datetime): """Mock datetime.datetime.now() with a fixed datetime.""" @classmethod def now(cls): # type: ignore # Create a copy of dt_value. return datetime.datetime( dt_value.year, dt_value.month, dt_value.day, dt_value.hour, dt_value.minute, dt_value.second, dt_value.microsecond, dt_value.tzinfo, ) real_datetime = datetime.datetime datetime.datetime = MockDateTime try: yield datetime.datetime finally: datetime.datetime = real_datetime [docs]def guard_import( module_name: str, *, pip_name: Optional[str] = None, package: Optional[str] = None ) -> Any: """Dynamically imports a module and raises a helpful exception if the module is not installed.""" try: module = importlib.import_module(module_name, package) except ImportError: raise ImportError( f"Could not import {module_name} python package. " f"Please install it with `pip install {pip_name or module_name}`." ) return module
https://api.python.langchain.com/en/latest/_modules/langchain/utils.html
ca5dfb8d2c94-3
) return module [docs]def check_package_version( package: str, lt_version: Optional[str] = None, lte_version: Optional[str] = None, gt_version: Optional[str] = None, gte_version: Optional[str] = None, ) -> None: """Check the version of a package.""" imported_version = parse(version(package)) if lt_version is not None and imported_version >= parse(lt_version): raise ValueError( f"Expected {package} version to be < {lt_version}. Received " f"{imported_version}." ) if lte_version is not None and imported_version > parse(lte_version): raise ValueError( f"Expected {package} version to be <= {lte_version}. Received " f"{imported_version}." ) if gt_version is not None and imported_version <= parse(gt_version): raise ValueError( f"Expected {package} version to be > {gt_version}. Received " f"{imported_version}." ) if gte_version is not None and imported_version < parse(gte_version): raise ValueError( f"Expected {package} version to be >= {gte_version}. Received " f"{imported_version}." )
https://api.python.langchain.com/en/latest/_modules/langchain/utils.html
9c0a702e9113-0
Source code for langchain.text_splitter """Functionality for splitting text.""" from __future__ import annotations import copy import logging import re from abc import ABC, abstractmethod from dataclasses import dataclass from enum import Enum from typing import ( AbstractSet, Any, Callable, Collection, Dict, Iterable, List, Literal, Optional, Sequence, Tuple, Type, TypedDict, TypeVar, Union, cast, ) from langchain.docstore.document import Document from langchain.schema import BaseDocumentTransformer logger = logging.getLogger(__name__) TS = TypeVar("TS", bound="TextSplitter") def _split_text_with_regex( text: str, separator: str, keep_separator: bool ) -> List[str]: # Now that we have the separator, split the text if separator: if keep_separator: # The parentheses in the pattern keep the delimiters in the result. _splits = re.split(f"({separator})", text) splits = [_splits[i] + _splits[i + 1] for i in range(1, len(_splits), 2)] if len(_splits) % 2 == 0: splits += _splits[-1:] splits = [_splits[0]] + splits else: splits = re.split(separator, text) else: splits = list(text) return [s for s in splits if s != ""] [docs]class TextSplitter(BaseDocumentTransformer, ABC): """Interface for splitting text into chunks.""" def __init__( self,
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-1
"""Interface for splitting text into chunks.""" def __init__( self, chunk_size: int = 4000, chunk_overlap: int = 200, length_function: Callable[[str], int] = len, keep_separator: bool = False, add_start_index: bool = False, ) -> None: """Create a new TextSplitter. Args: chunk_size: Maximum size of chunks to return chunk_overlap: Overlap in characters between chunks length_function: Function that measures the length of given chunks keep_separator: Whether to keep the separator in the chunks add_start_index: If `True`, includes chunk's start index in metadata """ if chunk_overlap > chunk_size: raise ValueError( f"Got a larger chunk overlap ({chunk_overlap}) than chunk size " f"({chunk_size}), should be smaller." ) self._chunk_size = chunk_size self._chunk_overlap = chunk_overlap self._length_function = length_function self._keep_separator = keep_separator self._add_start_index = add_start_index [docs] @abstractmethod def split_text(self, text: str) -> List[str]: """Split text into multiple components.""" [docs] def create_documents( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> List[Document]: """Create documents from a list of texts.""" _metadatas = metadatas or [{}] * len(texts) documents = [] for i, text in enumerate(texts): index = -1 for chunk in self.split_text(text): metadata = copy.deepcopy(_metadatas[i])
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-2
metadata = copy.deepcopy(_metadatas[i]) if self._add_start_index: index = text.find(chunk, index + 1) metadata["start_index"] = index new_doc = Document(page_content=chunk, metadata=metadata) documents.append(new_doc) return documents [docs] def split_documents(self, documents: Iterable[Document]) -> List[Document]: """Split documents.""" texts, metadatas = [], [] for doc in documents: texts.append(doc.page_content) metadatas.append(doc.metadata) return self.create_documents(texts, metadatas=metadatas) def _join_docs(self, docs: List[str], separator: str) -> Optional[str]: text = separator.join(docs) text = text.strip() if text == "": return None else: return text def _merge_splits(self, splits: Iterable[str], separator: str) -> List[str]: # We now want to combine these smaller pieces into medium size # chunks to send to the LLM. separator_len = self._length_function(separator) docs = [] current_doc: List[str] = [] total = 0 for d in splits: _len = self._length_function(d) if ( total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size ): if total > self._chunk_size: logger.warning( f"Created a chunk of size {total}, " f"which is longer than the specified {self._chunk_size}" ) if len(current_doc) > 0:
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-3
) if len(current_doc) > 0: doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) # Keep on popping if: # - we have a larger chunk than in the chunk overlap # - or if we still have any chunks and the length is long while total > self._chunk_overlap or ( total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size and total > 0 ): total -= self._length_function(current_doc[0]) + ( separator_len if len(current_doc) > 1 else 0 ) current_doc = current_doc[1:] current_doc.append(d) total += _len + (separator_len if len(current_doc) > 1 else 0) doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) return docs [docs] @classmethod def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter: """Text splitter that uses HuggingFace tokenizer to count length.""" try: from transformers import PreTrainedTokenizerBase if not isinstance(tokenizer, PreTrainedTokenizerBase): raise ValueError( "Tokenizer received was not an instance of PreTrainedTokenizerBase" ) def _huggingface_tokenizer_length(text: str) -> int: return len(tokenizer.encode(text)) except ImportError: raise ValueError( "Could not import transformers python package. " "Please install it with `pip install transformers`." )
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-4
"Please install it with `pip install transformers`." ) return cls(length_function=_huggingface_tokenizer_length, **kwargs) [docs] @classmethod def from_tiktoken_encoder( cls: Type[TS], encoding_name: str = "gpt2", model_name: Optional[str] = None, allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), disallowed_special: Union[Literal["all"], Collection[str]] = "all", **kwargs: Any, ) -> TS: """Text splitter that uses tiktoken encoder to count length.""" try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate max_tokens_for_prompt. " "Please install it with `pip install tiktoken`." ) if model_name is not None: enc = tiktoken.encoding_for_model(model_name) else: enc = tiktoken.get_encoding(encoding_name) def _tiktoken_encoder(text: str) -> int: return len( enc.encode( text, allowed_special=allowed_special, disallowed_special=disallowed_special, ) ) if issubclass(cls, TokenTextSplitter): extra_kwargs = { "encoding_name": encoding_name, "model_name": model_name, "allowed_special": allowed_special, "disallowed_special": disallowed_special, } kwargs = {**kwargs, **extra_kwargs} return cls(length_function=_tiktoken_encoder, **kwargs) [docs] def transform_documents(
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-5
[docs] def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Transform sequence of documents by splitting them.""" return self.split_documents(list(documents)) [docs] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Asynchronously transform a sequence of documents by splitting them.""" raise NotImplementedError [docs]class CharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters.""" def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None: """Create a new TextSplitter.""" super().__init__(**kwargs) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. splits = _split_text_with_regex(text, self._separator, self._keep_separator) _separator = "" if self._keep_separator else self._separator return self._merge_splits(splits, _separator) [docs]class LineType(TypedDict): """Line type as typed dict.""" metadata: Dict[str, str] content: str [docs]class HeaderType(TypedDict): """Header type as typed dict.""" level: int name: str data: str class MarkdownHeaderTextSplitter: """Implementation of splitting markdown files based on specified headers.""" def __init__( self, headers_to_split_on: List[Tuple[str, str]], return_each_line: bool = False ):
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-6
): """Create a new MarkdownHeaderTextSplitter. Args: headers_to_split_on: Headers we want to track return_each_line: Return each line w/ associated headers """ # Output line-by-line or aggregated into chunks w/ common headers self.return_each_line = return_each_line # Given the headers we want to split on, # (e.g., "#, ##, etc") order by length self.headers_to_split_on = sorted( headers_to_split_on, key=lambda split: len(split[0]), reverse=True ) def aggregate_lines_to_chunks(self, lines: List[LineType]) -> List[Document]: """Combine lines with common metadata into chunks Args: lines: Line of text / associated header metadata """ aggregated_chunks: List[LineType] = [] for line in lines: if ( aggregated_chunks and aggregated_chunks[-1]["metadata"] == line["metadata"] ): # If the last line in the aggregated list # has the same metadata as the current line, # append the current content to the last lines's content aggregated_chunks[-1]["content"] += " \n" + line["content"] else: # Otherwise, append the current line to the aggregated list aggregated_chunks.append(line) return [ Document(page_content=chunk["content"], metadata=chunk["metadata"]) for chunk in aggregated_chunks ] def split_text(self, text: str) -> List[Document]: """Split markdown file Args: text: Markdown file""" # Split the input text by newline character ("\n"). lines = text.split("\n") # Final output
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-7
lines = text.split("\n") # Final output lines_with_metadata: List[LineType] = [] # Content and metadata of the chunk currently being processed current_content: List[str] = [] current_metadata: Dict[str, str] = {} # Keep track of the nested header structure # header_stack: List[Dict[str, Union[int, str]]] = [] header_stack: List[HeaderType] = [] initial_metadata: Dict[str, str] = {} for line in lines: stripped_line = line.strip() # Check each line against each of the header types (e.g., #, ##) for sep, name in self.headers_to_split_on: # Check if line starts with a header that we intend to split on if stripped_line.startswith(sep) and ( # Header with no text OR header is followed by space # Both are valid conditions that sep is being used a header len(stripped_line) == len(sep) or stripped_line[len(sep)] == " " ): # Ensure we are tracking the header as metadata if name is not None: # Get the current header level current_header_level = sep.count("#") # Pop out headers of lower or same level from the stack while ( header_stack and header_stack[-1]["level"] >= current_header_level ): # We have encountered a new header # at the same or higher level popped_header = header_stack.pop() # Clear the metadata for the # popped header in initial_metadata if popped_header["name"] in initial_metadata: initial_metadata.pop(popped_header["name"]) # Push the current header to the stack
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-8
# Push the current header to the stack header: HeaderType = { "level": current_header_level, "name": name, "data": stripped_line[len(sep) :].strip(), } header_stack.append(header) # Update initial_metadata with the current header initial_metadata[name] = header["data"] # Add the previous line to the lines_with_metadata # only if current_content is not empty if current_content: lines_with_metadata.append( { "content": "\n".join(current_content), "metadata": current_metadata.copy(), } ) current_content.clear() break else: if stripped_line: current_content.append(stripped_line) elif current_content: lines_with_metadata.append( { "content": "\n".join(current_content), "metadata": current_metadata.copy(), } ) current_content.clear() current_metadata = initial_metadata.copy() if current_content: lines_with_metadata.append( {"content": "\n".join(current_content), "metadata": current_metadata} ) # lines_with_metadata has each line with associated header metadata # aggregate these into chunks based on common metadata if not self.return_each_line: return self.aggregate_lines_to_chunks(lines_with_metadata) else: return [ Document(page_content=chunk["content"], metadata=chunk["metadata"]) for chunk in lines_with_metadata ] # should be in newer Python versions (3.10+) # @dataclass(frozen=True, kw_only=True, slots=True) @dataclass(frozen=True) class Tokenizer: chunk_overlap: int
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-9
@dataclass(frozen=True) class Tokenizer: chunk_overlap: int tokens_per_chunk: int decode: Callable[[list[int]], str] encode: Callable[[str], List[int]] [docs]def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> List[str]: """Split incoming text and return chunks.""" splits: List[str] = [] input_ids = tokenizer.encode(text) start_idx = 0 cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] while start_idx < len(input_ids): splits.append(tokenizer.decode(chunk_ids)) start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] return splits [docs]class TokenTextSplitter(TextSplitter): """Implementation of splitting text that looks at tokens.""" def __init__( self, encoding_name: str = "gpt2", model_name: Optional[str] = None, allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), disallowed_special: Union[Literal["all"], Collection[str]] = "all", **kwargs: Any, ) -> None: """Create a new TextSplitter.""" super().__init__(**kwargs) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to for TokenTextSplitter. " "Please install it with `pip install tiktoken`." )
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-10
"Please install it with `pip install tiktoken`." ) if model_name is not None: enc = tiktoken.encoding_for_model(model_name) else: enc = tiktoken.get_encoding(encoding_name) self._tokenizer = enc self._allowed_special = allowed_special self._disallowed_special = disallowed_special [docs] def split_text(self, text: str) -> List[str]: def _encode(_text: str) -> List[int]: return self._tokenizer.encode( _text, allowed_special=self._allowed_special, disallowed_special=self._disallowed_special, ) tokenizer = Tokenizer( chunk_overlap=self._chunk_overlap, tokens_per_chunk=self._chunk_size, decode=self._tokenizer.decode, encode=_encode, ) return split_text_on_tokens(text=text, tokenizer=tokenizer) [docs]class SentenceTransformersTokenTextSplitter(TextSplitter): """Implementation of splitting text that looks at tokens.""" def __init__( self, chunk_overlap: int = 50, model_name: str = "sentence-transformers/all-mpnet-base-v2", tokens_per_chunk: Optional[int] = None, **kwargs: Any, ) -> None: """Create a new TextSplitter.""" super().__init__(**kwargs, chunk_overlap=chunk_overlap) try: from sentence_transformers import SentenceTransformer except ImportError: raise ImportError( "Could not import sentence_transformer python package. " "This is needed in order to for SentenceTransformersTokenTextSplitter. " "Please install it with `pip install sentence-transformers`." )
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-11
"Please install it with `pip install sentence-transformers`." ) self.model_name = model_name self._model = SentenceTransformer(self.model_name) self.tokenizer = self._model.tokenizer self._initialize_chunk_configuration(tokens_per_chunk=tokens_per_chunk) def _initialize_chunk_configuration( self, *, tokens_per_chunk: Optional[int] ) -> None: self.maximum_tokens_per_chunk = cast(int, self._model.max_seq_length) if tokens_per_chunk is None: self.tokens_per_chunk = self.maximum_tokens_per_chunk else: self.tokens_per_chunk = tokens_per_chunk if self.tokens_per_chunk > self.maximum_tokens_per_chunk: raise ValueError( f"The token limit of the models '{self.model_name}'" f" is: {self.maximum_tokens_per_chunk}." f" Argument tokens_per_chunk={self.tokens_per_chunk}" f" > maximum token limit." ) [docs] def split_text(self, text: str) -> List[str]: def encode_strip_start_and_stop_token_ids(text: str) -> List[int]: return self._encode(text)[1:-1] tokenizer = Tokenizer( chunk_overlap=self._chunk_overlap, tokens_per_chunk=self.tokens_per_chunk, decode=self.tokenizer.decode, encode=encode_strip_start_and_stop_token_ids, ) return split_text_on_tokens(text=text, tokenizer=tokenizer) [docs] def count_tokens(self, *, text: str) -> int: return len(self._encode(text)) _max_length_equal_32_bit_integer = 2**32 def _encode(self, text: str) -> List[int]:
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-12
def _encode(self, text: str) -> List[int]: token_ids_with_start_and_end_token_ids = self.tokenizer.encode( text, max_length=self._max_length_equal_32_bit_integer, truncation="do_not_truncate", ) return token_ids_with_start_and_end_token_ids [docs]class Language(str, Enum): """Enum of the programming languages.""" CPP = "cpp" GO = "go" JAVA = "java" JS = "js" PHP = "php" PROTO = "proto" PYTHON = "python" RST = "rst" RUBY = "ruby" RUST = "rust" SCALA = "scala" SWIFT = "swift" MARKDOWN = "markdown" LATEX = "latex" HTML = "html" SOL = "sol" [docs]class RecursiveCharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters. Recursively tries to split by different characters to find one that works. """ def __init__( self, separators: Optional[List[str]] = None, keep_separator: bool = True, **kwargs: Any, ) -> None: """Create a new TextSplitter.""" super().__init__(keep_separator=keep_separator, **kwargs) self._separators = separators or ["\n\n", "\n", " ", ""] def _split_text(self, text: str, separators: List[str]) -> List[str]: """Split incoming text and return chunks.""" final_chunks = [] # Get appropriate separator to use
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-13
final_chunks = [] # Get appropriate separator to use separator = separators[-1] new_separators = [] for i, _s in enumerate(separators): if _s == "": separator = _s break if re.search(_s, text): separator = _s new_separators = separators[i + 1 :] break splits = _split_text_with_regex(text, separator, self._keep_separator) # Now go merging things, recursively splitting longer texts. _good_splits = [] _separator = "" if self._keep_separator else separator for s in splits: if self._length_function(s) < self._chunk_size: _good_splits.append(s) else: if _good_splits: merged_text = self._merge_splits(_good_splits, _separator) final_chunks.extend(merged_text) _good_splits = [] if not new_separators: final_chunks.append(s) else: other_info = self._split_text(s, new_separators) final_chunks.extend(other_info) if _good_splits: merged_text = self._merge_splits(_good_splits, _separator) final_chunks.extend(merged_text) return final_chunks [docs] def split_text(self, text: str) -> List[str]: return self._split_text(text, self._separators) [docs] @classmethod def from_language( cls, language: Language, **kwargs: Any ) -> RecursiveCharacterTextSplitter: separators = cls.get_separators_for_language(language) return cls(separators=separators, **kwargs) [docs] @staticmethod
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-14
[docs] @staticmethod def get_separators_for_language(language: Language) -> List[str]: if language == Language.CPP: return [ # Split along class definitions "\nclass ", # Split along function definitions "\nvoid ", "\nint ", "\nfloat ", "\ndouble ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.GO: return [ # Split along function definitions "\nfunc ", "\nvar ", "\nconst ", "\ntype ", # Split along control flow statements "\nif ", "\nfor ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.JAVA: return [ # Split along class definitions "\nclass ", # Split along method definitions "\npublic ", "\nprotected ", "\nprivate ", "\nstatic ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.JS: return [
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-15
"", ] elif language == Language.JS: return [ # Split along function definitions "\nfunction ", "\nconst ", "\nlet ", "\nvar ", "\nclass ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\nswitch ", "\ncase ", "\ndefault ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.PHP: return [ # Split along function definitions "\nfunction ", # Split along class definitions "\nclass ", # Split along control flow statements "\nif ", "\nforeach ", "\nwhile ", "\ndo ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.PROTO: return [ # Split along message definitions "\nmessage ", # Split along service definitions "\nservice ", # Split along enum definitions "\nenum ", # Split along option definitions "\noption ", # Split along import statements "\nimport ", # Split along syntax declarations "\nsyntax ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.PYTHON: return [ # First, try to split along class definitions "\nclass ",
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html