File size: 7,023 Bytes
b4123b8
91a7a12
b4123b8
 
 
 
91a7a12
b4123b8
 
 
 
dd1d7f5
b4123b8
 
 
dd1d7f5
 
b4123b8
 
 
91a7a12
b4123b8
dd1d7f5
91a7a12
 
dd1d7f5
b4123b8
91a7a12
 
 
 
dd1d7f5
 
 
b4123b8
dffab99
b4123b8
dd1d7f5
b4123b8
 
 
 
 
91a7a12
b4123b8
dd1d7f5
91a7a12
 
7c31b44
 
88a828f
 
7c31b44
 
 
88a828f
7c31b44
731e4a7
7c31b44
 
 
 
 
 
 
 
 
88a828f
 
7c31b44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91a7a12
 
88a828f
91a7a12
b4123b8
91a7a12
7c31b44
91a7a12
 
 
 
 
7c31b44
91a7a12
 
7c31b44
91a7a12
 
7c31b44
91a7a12
b4123b8
91a7a12
 
b4123b8
91a7a12
2c0bae7
91a7a12
2c0bae7
 
 
 
b4123b8
 
dd1d7f5
7c31b44
b4123b8
dd1d7f5
 
c170961
7c31b44
10bba96
c170961
 
7c31b44
 
 
 
c170961
 
 
 
7c31b44
 
c170961
 
 
7c31b44
c170961
 
 
7c31b44
91a7a12
 
 
 
7c31b44
 
31ddfa7
b4123b8
91a7a12
b4123b8
91a7a12
7c31b44
91a7a12
c170961
91a7a12
 
 
7c31b44
 
 
 
 
 
 
 
91a7a12
 
 
 
7c31b44
91a7a12
 
 
b4123b8
91a7a12
7c31b44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""
Minimal single-image pipeline for Hugging Face demo.
"""

import logging
from pathlib import Path
from typing import Dict, Any
import numpy as np
import cv2

from .config import Config
from .data import ImagePreprocessor, MaskHandler
from .features import TextureExtractor, VegetationIndexExtractor, MorphologyExtractor
from .output import OutputManager
from .segmentation import SegmentationManager

logger = logging.getLogger(__name__)


class SorghumPipeline:
    """Minimal pipeline for single-image processing."""
    
    def __init__(self, config: Config):
        """Initialize pipeline."""
        logging.basicConfig(level=logging.INFO, format='%(levelname)s - %(message)s')
        self.config = config
        self.config.validate()
        
        # Initialize components with defaults
        self.preprocessor = ImagePreprocessor()
        self.mask_handler = MaskHandler()
        self.texture_extractor = TextureExtractor()
        self.vegetation_extractor = VegetationIndexExtractor()
        self.morphology_extractor = MorphologyExtractor()
        self.segmentation_manager = SegmentationManager(
            model_name="briaai/RMBG-2.0",
            device=self.config.get_device(),
            trust_remote_code=True
        )
        self.output_manager = OutputManager(
            output_folder=self.config.paths.output_folder,
            settings=self.config.output
        )
        logger.info("Pipeline initialized")

    def run(self, single_image_path: str) -> Dict[str, Any]:
        """Run pipeline on single image."""
        logger.info("Processing single image...")

        import time, imghdr, tifffile
        from PIL import Image

        start = time.perf_counter()

        # --- Load image with TIFF preference ---
        kind = imghdr.what(single_image_path)
        suffix = Path(single_image_path).suffix.lower()

        arr = None
        if kind == "tiff" or suffix in [".tif", ".tiff"]:
            try:
                arr = tifffile.imread(single_image_path)
                logger.info(f"Loaded TIFF: shape={arr.shape}, dtype={arr.dtype}")
            except Exception as e:
                logger.warning(f"tifffile failed ({e}), falling back to cv2")
                arr = cv2.imread(single_image_path, cv2.IMREAD_UNCHANGED)
                logger.info(f"Fallback read: shape={arr.shape}, dtype={arr.dtype}")
        else:
            arr = cv2.imread(single_image_path, cv2.IMREAD_UNCHANGED)
            logger.info(f"Loaded non-TIFF: shape={arr.shape}, dtype={arr.dtype}")

        # --- Normalize array shape ---
        if arr is None:
            raise ValueError(f"Could not read image: {single_image_path}")
        if arr.ndim > 3:
            arr = arr[..., 0]  # drop extra dimension
        if arr.ndim == 3 and arr.shape[-1] == 1:
            arr = arr[..., 0]  # squeeze singleton

        logger.info(f"DEBUG normalized input: shape={arr.shape}, dtype={arr.dtype}")

        # Wrap into PIL image for downstream pipeline
        img = Image.fromarray(arr)

        plants = {
            "demo": {
                "raw_image": (img, Path(single_image_path).name),
                "plant_name": "demo",
            }
        }

        # Process: composite → segment → features → save
        plants = self.preprocessor.create_composites(plants)
        plants = self._segment(plants)
        plants = self._extract_features(plants)
        self.output_manager.create_output_directories()

        for key, pdata in plants.items():
            self.output_manager.save_plant_results(key, pdata)

        elapsed = time.perf_counter() - start
        logger.info(f"Completed in {elapsed:.2f}s")

        return {"plants": plants, "timing": elapsed}

    def _segment(self, plants: Dict[str, Any]) -> Dict[str, Any]:
        """Segment using BRIA."""
        for key, pdata in plants.items():
            composite = pdata['composite']
            logger.info(f"Composite shape: {composite.shape}")
            soft_mask = self.segmentation_manager.segment_image_soft(composite)
            logger.info(f"Soft mask shape: {soft_mask.shape}")
            mask_uint8 = (soft_mask * 255.0).astype(np.uint8)
            logger.info(f"Mask uint8 shape: {mask_uint8.shape}")
            pdata['mask'] = mask_uint8
        return plants
    
    def _extract_features(self, plants: Dict[str, Any]) -> Dict[str, Any]:
        """Extract features: texture + vegetation indices."""
        for key, pdata in plants.items():
            composite = pdata['composite']
            mask = pdata.get('mask')

            # --- Texture: LBP on green band ---
            pdata['texture_features'] = {}
            spectral = pdata.get('spectral_stack', {})
            if 'green' in spectral:
                green_band = np.asarray(spectral['green'], dtype=np.float64)
                if green_band.ndim == 3 and green_band.shape[-1] == 1:
                    green_band = green_band[..., 0]

                if mask is not None:
                    valid = np.where(mask > 0, green_band, np.nan)
                else:
                    valid = green_band

                v = np.nan_to_num(valid, nan=np.nanmin(valid))
                m, M = np.min(v), np.max(v)
                denom = (M - m) if (M - m) > 1e-6 else 1.0
                gray8 = ((v - m) / denom * 255.0).astype(np.uint8)

                lbp_map = self.texture_extractor.extract_lbp(gray8)
                pdata['texture_features'] = {'green': {'features': {'lbp': lbp_map}}}

            # --- Vegetation indices ---
            if spectral and mask is not None:
                pdata['vegetation_indices'] = self._compute_vegetation(spectral, mask)
            else:
                pdata['vegetation_indices'] = {}

            # --- Morphology (currently empty) ---
            pdata['morphology_features'] = {}
        
        return plants
    
    def _compute_vegetation(self, spectral: Dict[str, np.ndarray], mask: np.ndarray) -> Dict[str, Any]:
        """Compute NDVI, GNDVI, SAVI."""
        out = {}
        for name in ("NDVI", "GNDVI", "SAVI"):
            bands = self.vegetation_extractor.index_bands.get(name, [])
            if not all(b in spectral for b in bands):
                continue

            arrays = []
            for b in bands:
                arr = np.asarray(spectral[b], dtype=np.float64)
                if arr.ndim == 3 and arr.shape[-1] == 1:
                    arr = arr[..., 0]
                arrays.append(arr)

            values = self.vegetation_extractor.index_formulas[name](*arrays).astype(np.float64)
            binary_mask = (mask > 0)
            masked_values = np.where(binary_mask, values, np.nan)
            valid = masked_values[~np.isnan(masked_values)]

            stats = {
                'mean': float(np.mean(valid)) if valid.size else 0.0,
                'std': float(np.std(valid)) if valid.size else 0.0,
            }
            out[name] = {'values': masked_values, 'statistics': stats}
        return out