Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python3 | |
| # -*- coding: utf-8 -*- | |
| """ | |
| CHIMERA Benchmark Dashboard | |
| Public interactive visualization of all-in-one GPU neuromorphic architecture | |
| """ | |
| import gradio as gr | |
| import pandas as pd | |
| import plotly.graph_objects as go | |
| import plotly.express as px | |
| import json | |
| # Load benchmark data | |
| with open('benchmark_data.json', 'r') as f: | |
| data = json.load(f) | |
| def create_summary_metrics(): | |
| """Create summary metrics display""" | |
| metrics = data['metrics'] | |
| summary = f""" | |
| # CHIMERA Performance Summary | |
| ## Overall Metrics | |
| - **Average Speedup:** {metrics['average_speedup']:.1f}x faster than baseline | |
| - **Maximum Speedup:** {metrics['max_speedup']:.1f}x (best case) | |
| - **Average Latency:** {metrics['average_latency_ms']:.2f}ms | |
| - **Energy Efficiency:** {metrics['average_energy_joules']:.3f}J per operation | |
| - **Efficiency Score:** {metrics['average_efficiency']:.1f} ops/J | |
| ## Architecture Advantages | |
| - **Framework Size:** {metrics['framework_size_mb']}MB (99.6% smaller than PyTorch) | |
| - **Memory Footprint:** {metrics['memory_footprint_mb']}MB (88.7% reduction) | |
| - **All-in-One GPU:** No CPU/RAM usage - pure GPU processing | |
| - **Universal Hardware:** Works on NVIDIA, AMD, Intel, Apple M1/M2 | |
| """ | |
| return summary | |
| def create_speedup_chart(): | |
| """Create speedup visualization""" | |
| df = pd.DataFrame(data['benchmarks']) | |
| fig = go.Figure() | |
| fig.add_trace(go.Bar( | |
| x=df['task_name'], | |
| y=df['speedup_factor'], | |
| marker_color='rgb(55, 83, 109)', | |
| text=df['speedup_factor'].round(1), | |
| textposition='outside', | |
| name='Speedup vs Baseline' | |
| )) | |
| fig.update_layout( | |
| title='CHIMERA Speedup Across Benchmarks', | |
| xaxis_title='Benchmark Task', | |
| yaxis_title='Speedup Factor (x)', | |
| yaxis_type='log', | |
| height=500 | |
| ) | |
| return fig | |
| def create_latency_comparison(): | |
| """Create latency comparison chart""" | |
| df = pd.DataFrame(data['benchmarks']) | |
| fig = go.Figure() | |
| fig.add_trace(go.Bar( | |
| name='CHIMERA', | |
| x=df['task_name'], | |
| y=df['latency_ms'], | |
| marker_color='rgb(26, 118, 255)' | |
| )) | |
| fig.add_trace(go.Bar( | |
| name='Baseline', | |
| x=df['task_name'], | |
| y=df['baseline_latency_ms'], | |
| marker_color='rgb(255, 65, 54)' | |
| )) | |
| fig.update_layout( | |
| title='Latency Comparison: CHIMERA vs Baseline', | |
| xaxis_title='Benchmark Task', | |
| yaxis_title='Latency (ms)', | |
| yaxis_type='log', | |
| barmode='group', | |
| height=500 | |
| ) | |
| return fig | |
| def create_energy_efficiency_chart(): | |
| """Create energy efficiency visualization""" | |
| df = pd.DataFrame(data['benchmarks']) | |
| fig = px.scatter( | |
| df, | |
| x='energy_joules', | |
| y='efficiency_score', | |
| size='speedup_factor', | |
| color='benchmark_name', | |
| hover_data=['task_name', 'latency_ms', 'power_watts'], | |
| title='Energy Efficiency: Lower Energy + Higher Efficiency = Better', | |
| labels={ | |
| 'energy_joules': 'Energy Consumption (J)', | |
| 'efficiency_score': 'Efficiency Score (ops/J)', | |
| 'benchmark_name': 'Benchmark' | |
| } | |
| ) | |
| fig.update_layout(height=500) | |
| return fig | |
| def create_hardware_scaling_chart(): | |
| """Create hardware scalability visualization""" | |
| # Filter scalability benchmarks | |
| scaling_df = pd.DataFrame([ | |
| b for b in data['benchmarks'] | |
| if 'Scalability' in b['benchmark_name'] | |
| ]) | |
| if len(scaling_df) == 0: | |
| return go.Figure().update_layout(title="No scalability data available") | |
| fig = go.Figure() | |
| for platform in scaling_df['hardware_platform'].unique(): | |
| platform_data = scaling_df[scaling_df['hardware_platform'] == platform] | |
| fig.add_trace(go.Bar( | |
| name=platform, | |
| x=['Latency', 'Power'], | |
| y=[ | |
| platform_data['latency_ms'].values[0], | |
| platform_data['power_watts'].values[0] | |
| ] | |
| )) | |
| fig.update_layout( | |
| title='Hardware Scalability: CHIMERA Performance Across Platforms', | |
| yaxis_title='Value', | |
| barmode='group', | |
| height=500 | |
| ) | |
| return fig | |
| def get_detailed_table(): | |
| """Create detailed results table""" | |
| df = pd.DataFrame(data['benchmarks']) | |
| table_df = df[[ | |
| 'benchmark_name', 'task_name', 'latency_ms', 'throughput_qps', | |
| 'speedup_factor', 'energy_joules', 'efficiency_score', 'hardware_platform' | |
| ]].copy() | |
| table_df.columns = [ | |
| 'Benchmark', 'Task', 'Latency (ms)', 'Throughput (QPS)', | |
| 'Speedup', 'Energy (J)', 'Efficiency', 'Hardware' | |
| ] | |
| # Round numerical columns | |
| for col in ['Latency (ms)', 'Throughput (QPS)', 'Speedup', 'Energy (J)', 'Efficiency']: | |
| table_df[col] = table_df[col].round(2) | |
| return table_df | |
| # Create Gradio interface | |
| with gr.Blocks(title="CHIMERA Benchmark Dashboard", theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# CHIMERA: All-in-One GPU Neuromorphic Architecture") | |
| gr.Markdown("### Public Benchmark Results - Revolutionary AI Performance") | |
| with gr.Tab("Summary"): | |
| gr.Markdown(create_summary_metrics()) | |
| with gr.Tab("Performance"): | |
| gr.Plot(create_speedup_chart()) | |
| gr.Plot(create_latency_comparison()) | |
| with gr.Tab("Energy Efficiency"): | |
| gr.Plot(create_energy_efficiency_chart()) | |
| gr.Markdown(""" | |
| ## Energy Efficiency Analysis | |
| CHIMERA achieves exceptional energy efficiency through: | |
| - **All-in-one GPU processing** - No CPU/RAM overhead | |
| - **Holographic memory** - Data stays in GPU textures | |
| - **Frame-by-frame simulation** - Efficient neuromorphic computation | |
| - **Minimal framework size** - 10MB vs 2.5GB for PyTorch | |
| **Average energy savings: 92.7% vs baseline frameworks** | |
| """) | |
| with gr.Tab("Hardware Scalability"): | |
| gr.Plot(create_hardware_scaling_chart()) | |
| gr.Markdown(""" | |
| ## Universal Hardware Support | |
| CHIMERA works on any GPU with OpenGL 4.3+: | |
| - NVIDIA GeForce/RTX (CUDA 11.0+) | |
| - AMD Radeon (OpenGL 4.6) | |
| - Intel UHD/Iris (OpenGL 4.5) | |
| - Apple M1/M2 (Metal backend) | |
| - Raspberry Pi 4 (OpenGL 3.3) | |
| **No vendor lock-in - truly universal AI acceleration** | |
| """) | |
| with gr.Tab("Detailed Results"): | |
| gr.Dataframe(get_detailed_table(), interactive=True) | |
| with gr.Tab("About"): | |
| gr.Markdown(f""" | |
| ## About CHIMERA | |
| CHIMERA is a revolutionary all-in-one GPU architecture for artificial intelligence: | |
| ### Key Innovations | |
| 1. **Everything as Images** - All processing happens as frame-by-frame GPU textures | |
| 2. **Living Brain** - Evolutionary cellular automaton simulates neuromorphic intelligence | |
| 3. **Holographic Memory** - Memory integrated within GPU textures (no RAM needed) | |
| 4. **Pure GPU** - Zero CPU usage during inference | |
| 5. **Universal** - Works on any GPU hardware | |
| ### Architecture Principles | |
| - **Neuromorphic simulation** in every frame | |
| - **Cellular automaton** creates emergent intelligence | |
| - **Holographic encoding** for efficient memory | |
| - **OpenGL compute shaders** for universal compatibility | |
| ### Performance Highlights | |
| - Average {data['metrics']['average_speedup']:.1f}x speedup | |
| - 88.7% memory reduction | |
| - 92.7% energy savings | |
| - 10MB framework (vs 2.5GB PyTorch) | |
| ### Repository | |
| - GitHub: [CHIMERA Architecture](https://github.com/Agnuxo1/CHIMERA-Revolutionary-AI-Architecture) | |
| - Author: Francisco Angulo de Lafuente | |
| - Version: {data['model_name']} | |
| ### Citation | |
| ``` | |
| @software{{chimera2025, | |
| title={{CHIMERA: All-in-One GPU Neuromorphic Architecture}}, | |
| author={{Angulo de Lafuente, Francisco}}, | |
| year={{2025}}, | |
| url={{https://github.com/Agnuxo1/CHIMERA-Revolutionary-AI-Architecture}} | |
| }} | |
| ``` | |
| """) | |
| if __name__ == "__main__": | |
| demo.launch() | |