|
|
|
|
|
import os |
|
|
import sys |
|
|
import time |
|
|
import random |
|
|
import logging |
|
|
import requests |
|
|
import json |
|
|
import re |
|
|
import subprocess |
|
|
import shutil |
|
|
from datetime import datetime |
|
|
from pathlib import Path |
|
|
|
|
|
import streamlit as st |
|
|
import pandas as pd |
|
|
import plotly.express as px |
|
|
import plotly.graph_objects as go |
|
|
from bs4 import BeautifulSoup |
|
|
import html2text |
|
|
import kaggle |
|
|
|
|
|
|
|
|
from config import app_config as config |
|
|
|
|
|
st.set_page_config( |
|
|
page_title="DevSecOps Data Bot", |
|
|
layout="wide", |
|
|
initial_sidebar_state="expanded" |
|
|
) |
|
|
|
|
|
|
|
|
def setup_logging(): |
|
|
log_dir = Path("logs") |
|
|
log_dir.mkdir(exist_ok=True) |
|
|
|
|
|
log_file = log_dir / f"data_collector_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log" |
|
|
|
|
|
logging.basicConfig( |
|
|
level=logging.INFO, |
|
|
format='%(asctime)s - %(levelname)s - %(message)s', |
|
|
handlers=[ |
|
|
logging.FileHandler(log_file), |
|
|
logging.StreamHandler(sys.stdout) |
|
|
] |
|
|
) |
|
|
return logging.getLogger(__name__) |
|
|
|
|
|
logger = setup_logging() |
|
|
|
|
|
|
|
|
def create_initial_setup(): |
|
|
dirs = [ |
|
|
"data/devsecops/qa", "data/security/qa", "data/development/qa", |
|
|
"data/data_analysis/qa", "logs", "config", "server", "scripts", |
|
|
"models", "llama.cpp", ".kaggle" |
|
|
] |
|
|
for dir_path in dirs: |
|
|
Path(dir_path).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
download_script = Path("scripts/download_with_aria2c.sh") |
|
|
if not download_script.exists(): |
|
|
with open(download_script, 'w') as f: |
|
|
f.write("""#!/bin/bash |
|
|
URL=$1 |
|
|
OUTPUT=$2 |
|
|
MAX_RETRIES=5 |
|
|
for i in $(seq 1 $MAX_RETRIES); do |
|
|
echo "Tentative $i/$MAX_RETRIES: $URL" |
|
|
aria2c -x 16 -s 16 -d "$(dirname "$OUTPUT")" -o "$(basename "$OUTPUT")" "$URL" && break |
|
|
sleep 10 |
|
|
done |
|
|
""") |
|
|
os.chmod(download_script, 0o755) |
|
|
|
|
|
llama_dir = Path("llama.cpp") |
|
|
if not llama_dir.exists(): |
|
|
st.info("Installation de llama.cpp...") |
|
|
subprocess.run(["git", "clone", "https://github.com/ggerganov/llama.cpp.git", str(llama_dir)]) |
|
|
os.chdir(str(llama_dir)) |
|
|
subprocess.run(["mkdir", "-p", "build"]) |
|
|
os.chdir("build") |
|
|
subprocess.run(["cmake", "..", "-DLLAMA_CURL=1"]) |
|
|
subprocess.run(["cmake", "--build", ".", "--config", "Release"]) |
|
|
os.chdir(Path(__file__).parent) |
|
|
|
|
|
model_path = Path("models/qwen2.5-1.5b-instruct-q8_0.gguf") |
|
|
if not model_path.exists(): |
|
|
st.warning("Le modèle GGUF n'existe pas. Téléchargement en cours...") |
|
|
Path("models").mkdir(exist_ok=True) |
|
|
model_url = "https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct-GGUF/resolve/main/qwen2.5-1.5b-instruct-q8_0.gguf" |
|
|
try: |
|
|
subprocess.run(["bash", str(download_script), model_url, str(model_path)]) |
|
|
if model_path.exists(): |
|
|
st.success("Modèle GGUF téléchargé avec succès!") |
|
|
else: |
|
|
st.error("Échec du téléchargement du modèle GGUF. Veuillez le placer manuellement dans le dossier models/") |
|
|
except Exception as e: |
|
|
st.error(f"Erreur lors du téléchargement du modèle: {str(e)}") |
|
|
|
|
|
|
|
|
h = html2text.HTML2Text() |
|
|
h.ignore_links = False |
|
|
h.ignore_images = True |
|
|
h.ignore_emphasis = False |
|
|
h.body_width = 0 |
|
|
|
|
|
|
|
|
def check_server_status(): |
|
|
try: |
|
|
response = requests.get("http://localhost:8080/health", timeout=2) |
|
|
if response.status_code == 200: |
|
|
st.session_state.server_status = "Actif" |
|
|
return True |
|
|
else: |
|
|
st.session_state.server_status = "Inactif" |
|
|
return False |
|
|
except requests.exceptions.RequestException: |
|
|
st.session_state.server_status = "Inactif" |
|
|
return False |
|
|
|
|
|
def start_llm_server(): |
|
|
if check_server_status(): |
|
|
st.info("Le serveur llama.cpp est déjà en cours d'exécution.") |
|
|
return |
|
|
|
|
|
model_path = Path("models/qwen2.5-1.5b-instruct-q8_0.gguf") |
|
|
if not model_path.exists(): |
|
|
st.error("Le modèle GGUF n'existe pas. Veuillez le placer dans le dossier models/.") |
|
|
return |
|
|
|
|
|
llama_server = Path("llama.cpp/build/bin/llama-server") |
|
|
if not llama_server.exists(): |
|
|
st.error("llama.cpp n'est pas compilé. Veuillez compiler llama.cpp d'abord.") |
|
|
return |
|
|
|
|
|
start_script = Path("server/start_server.sh") |
|
|
if not start_script.exists(): |
|
|
with open(start_script, 'w') as f: |
|
|
f.write(f"""#!/bin/bash |
|
|
MODEL_PATH="{str(model_path)}" |
|
|
if [ ! -f "$MODEL_PATH" ]; then |
|
|
echo "Le modèle GGUF est introuvable à: $MODEL_PATH" |
|
|
exit 1 |
|
|
fi |
|
|
"{str(llama_server)}" \\ |
|
|
-m "$MODEL_PATH" \\ |
|
|
--port 8080 \\ |
|
|
--host 0.0.0.0 \\ |
|
|
-c 4096 \\ |
|
|
-ngl 999 \\ |
|
|
--threads 8 \\ |
|
|
> "logs/llama_server.log" 2>&1 & |
|
|
echo $! > "server/server.pid" |
|
|
""") |
|
|
os.chmod(start_script, 0o755) |
|
|
|
|
|
try: |
|
|
subprocess.Popen(["bash", str(start_script)]) |
|
|
st.success("Le serveur llama.cpp est en cours de démarrage...") |
|
|
time.sleep(5) |
|
|
if check_server_status(): |
|
|
st.success("Serveur llama.cpp démarré avec succès!") |
|
|
else: |
|
|
st.error("Le serveur n'a pas pu démarrer. Vérifiez les logs dans le dossier logs/.") |
|
|
except Exception as e: |
|
|
st.error(f"Erreur lors du démarrage du serveur: {str(e)}") |
|
|
|
|
|
def stop_llm_server(): |
|
|
stop_script = Path("server/stop_server.sh") |
|
|
if not stop_script.exists(): |
|
|
with open(stop_script, 'w') as f: |
|
|
f.write("""#!/bin/bash |
|
|
PID_FILE="server/server.pid" |
|
|
if [ -f "$PID_FILE" ]; then |
|
|
PID=$(cat "$PID_FILE") |
|
|
kill $PID |
|
|
rm "$PID_FILE" |
|
|
echo "Serveur llama.cpp arrêté." |
|
|
else |
|
|
echo "Aucun PID de serveur trouvé." |
|
|
fi |
|
|
""") |
|
|
os.chmod(stop_script, 0o755) |
|
|
|
|
|
try: |
|
|
subprocess.run(["bash", str(stop_script)]) |
|
|
st.success("Le serveur llama.cpp est en cours d'arrêt...") |
|
|
time.sleep(2) |
|
|
if not check_server_status(): |
|
|
st.success("Serveur llama.cpp arrêté avec succès!") |
|
|
else: |
|
|
st.warning("Le serveur n'a pas pu être arrêté correctement.") |
|
|
except Exception as e: |
|
|
st.error(f"Erreur lors de l'arrêt du serveur: {str(e)}") |
|
|
|
|
|
def load_prompts(): |
|
|
prompts_file = Path("config/prompts.json") |
|
|
if not prompts_file.exists(): |
|
|
default_prompts = { |
|
|
"enrich_qa": { |
|
|
"system": "Tu es un expert DevSecOps. Améliore cette paire question/réponse en y ajoutant des tags, des signatures d'attaques potentielles, et en structurant les informations. Réponds uniquement avec un objet JSON.", |
|
|
"prompt_template": "Question originale: {question}\nRéponse originale: {answer}\nContexte: {context}\n\nFournis une version améliorée sous forme de JSON:\n{{\n \"question\": \"question améliorée\",\n \"answer\": \"réponse améliorée\",\n \"tags\": [\"tag1\", \"tag2\"],\n \"attack_signatures\": [\"signature1\", \"signature2\"]\n}}" |
|
|
}, |
|
|
"analyze_relevance": { |
|
|
"system": "Analyse ce contenu et détermine s'il est pertinent pour DevSecOps. Si pertinent, extrais les signatures d'attaques connues. Réponds uniquement avec un objet JSON.", |
|
|
"prompt_template": "Contenu: {content}...\n\nRéponds sous forme de JSON:\n{{\n \"relevant\": true,\n \"attack_signatures\": [\"signature1\", \"signature2\"],\n \"security_tags\": [\"tag1\", \"tag2\"],\n \"it_relevance_score\": 0-100\n}}" |
|
|
}, |
|
|
"generate_queries": { |
|
|
"system": "Analyse les données actuelles et génère 5 nouvelles requêtes de recherche pour trouver plus de contenu DevSecOps pertinent, en particulier des signatures d'attaques et vulnérabilités. Réponds uniquement avec un objet JSON.", |
|
|
"prompt_template": "Données actuelles: {current_data}...\n\nRéponds sous forme de JSON:\n{{\n \"queries\": [\"query1\", \"query2\", \"query3\", \"query4\", \"query5\"]\n}}" |
|
|
} |
|
|
} |
|
|
with open(prompts_file, 'w') as f: |
|
|
json.dump(default_prompts, f, indent=2) |
|
|
|
|
|
with open(prompts_file, 'r', encoding='utf-8') as f: |
|
|
return json.load(f) |
|
|
|
|
|
PROMPTS = load_prompts() |
|
|
|
|
|
class IAEnricher: |
|
|
def __init__(self): |
|
|
self.server_url = config.LLM_SERVER_URL |
|
|
self.available = check_server_status() |
|
|
if self.available: |
|
|
logger.info("Serveur llama.cpp détecté et prêt.") |
|
|
else: |
|
|
logger.warning("Serveur llama.cpp non disponible. Les fonctionnalités d'IA seront désactivées.") |
|
|
|
|
|
def _get_qwen_response(self, prompt, **kwargs): |
|
|
if not self.available: |
|
|
return None |
|
|
|
|
|
payload = { |
|
|
"prompt": prompt, |
|
|
"n_predict": kwargs.get('n_predict', 512), |
|
|
"temperature": kwargs.get('temperature', 0.7), |
|
|
"stop": ["<|im_end|>", "</s>"] |
|
|
} |
|
|
|
|
|
try: |
|
|
response = requests.post(self.server_url, json=payload, timeout=60) |
|
|
if response.status_code == 200: |
|
|
return response.json().get('content', '') |
|
|
else: |
|
|
logger.error(f"Erreur du serveur LLM: {response.status_code} - {response.text}") |
|
|
return None |
|
|
except requests.exceptions.RequestException as e: |
|
|
logger.error(f"Erreur de connexion au serveur LLM: {str(e)}") |
|
|
return None |
|
|
|
|
|
def enrich_qa_pair(self, question, answer, context=""): |
|
|
if not self.available or not st.session_state.enable_enrichment: |
|
|
return question, answer, [], [] |
|
|
|
|
|
prompt_template = PROMPTS.get("enrich_qa", {}).get("prompt_template", "") |
|
|
system_prompt = PROMPTS.get("enrich_qa", {}).get("system", "") |
|
|
|
|
|
full_prompt = f"{system_prompt}\n\n{prompt_template.format(question=question, answer=answer, context=context[:500])}" |
|
|
response_text = self._get_qwen_response(full_prompt, n_predict=1024) |
|
|
|
|
|
if response_text: |
|
|
try: |
|
|
json_match = re.search(r'\{.*\}', response_text, re.DOTALL) |
|
|
if json_match: |
|
|
enriched_data = json.loads(json_match.group()) |
|
|
return ( |
|
|
enriched_data.get('question', question), |
|
|
enriched_data.get('answer', answer), |
|
|
enriched_data.get('tags', []), |
|
|
enriched_data.get('attack_signatures', []) |
|
|
) |
|
|
except json.JSONDecodeError as e: |
|
|
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}") |
|
|
|
|
|
return question, answer, [], [] |
|
|
|
|
|
def analyze_content_relevance(self, content): |
|
|
if not self.available or not st.session_state.enable_enrichment: |
|
|
return True, [], [], 50 |
|
|
|
|
|
prompt_template = PROMPTS.get("analyze_relevance", {}).get("prompt_template", "") |
|
|
system_prompt = PROMPTS.get("analyze_relevance", {}).get("system", "") |
|
|
|
|
|
full_prompt = f"{system_prompt}\n\n{prompt_template.format(content=content[:1500])}" |
|
|
response_text = self._get_qwen_response(full_prompt, n_predict=256, temperature=st.session_state.temperature) |
|
|
|
|
|
if response_text: |
|
|
try: |
|
|
json_match = re.search(r'\{.*\}', response_text, re.DOTALL) |
|
|
if json_match: |
|
|
analysis = json.loads(json_match.group()) |
|
|
return ( |
|
|
analysis.get('relevant', True), |
|
|
analysis.get('attack_signatures', []), |
|
|
analysis.get('security_tags', []), |
|
|
analysis.get('it_relevance_score', 50) |
|
|
) |
|
|
except json.JSONDecodeError as e: |
|
|
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}") |
|
|
return True, [], [], 50 |
|
|
|
|
|
def generate_adaptive_queries(self, current_data): |
|
|
if not self.available or not st.session_state.enable_enrichment: |
|
|
return [] |
|
|
|
|
|
prompt_template = PROMPTS.get("generate_queries", {}).get("prompt_template", "") |
|
|
system_prompt = PROMPTS.get("generate_queries", {}).get("system", "") |
|
|
|
|
|
full_prompt = f"{system_prompt}\n\n{prompt_template.format(current_data=current_data[:1000])}" |
|
|
response_text = self._get_qwen_response(full_prompt, n_predict=st.session_state.n_predict) |
|
|
|
|
|
if response_text: |
|
|
try: |
|
|
json_match = re.search(r'\{.*\}', response_text, re.DOTALL) |
|
|
if json_match: |
|
|
queries_data = json.loads(json_match.group()) |
|
|
return queries_data.get('queries', []) |
|
|
except json.JSONDecodeError as e: |
|
|
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}") |
|
|
return [] |
|
|
|
|
|
ia_enricher = IAEnricher() |
|
|
|
|
|
def check_api_keys(): |
|
|
keys = { |
|
|
'GITHUB_API_TOKEN': os.getenv('GITHUB_API_TOKEN'), |
|
|
'HUGGINGFACE_API_TOKEN': os.getenv('HUGGINGFACE_API_TOKEN'), |
|
|
'NVD_API_KEY': os.getenv('NVD_API_KEY'), |
|
|
'STACK_EXCHANGE_API_KEY': os.getenv('STACK_EXCHANGE_API_KEY') |
|
|
} |
|
|
|
|
|
valid_keys = {k: v for k, v in keys.items() if v and v != f'your_{k.lower()}_here'} |
|
|
|
|
|
config.USE_API_KEYS = len(valid_keys) == len(keys) |
|
|
if not config.USE_API_KEYS: |
|
|
missing = set(keys.keys()) - set(valid_keys.keys()) |
|
|
logger.warning(f"Clés d'API manquantes ou non configurées: {', '.join(missing)}") |
|
|
logger.warning("Le bot fonctionnera en mode dégradé avec des pauses plus longues.") |
|
|
else: |
|
|
logger.info("Toutes les clés d'API sont configurées.") |
|
|
return config.USE_API_KEYS |
|
|
|
|
|
def make_request(url, headers=None, params=None, is_api_call=True): |
|
|
global REQUEST_COUNT |
|
|
|
|
|
pause_factor = 1 if config.USE_API_KEYS else 2 |
|
|
|
|
|
if config.REQUEST_COUNT >= config.MAX_REQUESTS_BEFORE_PAUSE: |
|
|
pause_time = random.uniform(config.MIN_PAUSE * pause_factor, config.MAX_PAUSE * pause_factor) |
|
|
logger.info(f"Pause de {pause_time:.2f} secondes après {config.REQUEST_COUNT} requêtes...") |
|
|
time.sleep(pause_time) |
|
|
config.REQUEST_COUNT = 0 |
|
|
|
|
|
try: |
|
|
response = requests.get(url, headers=headers, params=params, timeout=30) |
|
|
config.REQUEST_COUNT += 1 |
|
|
|
|
|
if response.status_code == 200: |
|
|
return response |
|
|
elif response.status_code in [401, 403]: |
|
|
logger.warning(f"Accès non autorisé à {url}. Vérifiez vos clés d'API.") |
|
|
return None |
|
|
elif response.status_code == 429: |
|
|
retry_after = int(response.headers.get('Retry-After', 10)) |
|
|
logger.warning(f"Limite de débit atteinte. Pause de {retry_after} secondes...") |
|
|
time.sleep(retry_after) |
|
|
return make_request(url, headers, params, is_api_call) |
|
|
else: |
|
|
logger.warning(f"Statut HTTP {response.status_code} pour {url}") |
|
|
return None |
|
|
except requests.exceptions.RequestException as e: |
|
|
logger.error(f"Erreur lors de la requête à {url}: {str(e)}") |
|
|
return None |
|
|
|
|
|
def clean_html(html_content): |
|
|
if not html_content: |
|
|
return "" |
|
|
text = h.handle(html_content) |
|
|
text = re.sub(r'\s+', ' ', text).strip() |
|
|
return text |
|
|
|
|
|
def save_qa_pair(question, answer, category, subcategory, source, attack_signatures=None, tags=None): |
|
|
global TOTAL_QA_PAIRS |
|
|
|
|
|
if ia_enricher.available and st.session_state.enable_enrichment: |
|
|
enriched_question, enriched_answer, enriched_tags, enriched_signatures = ia_enricher.enrich_qa_pair( |
|
|
question, answer, f"{category}/{subcategory}" |
|
|
) |
|
|
|
|
|
question = enriched_question |
|
|
answer = enriched_answer |
|
|
tags = list(set((tags or []) + enriched_tags)) |
|
|
attack_signatures = list(set((attack_signatures or []) + enriched_signatures)) |
|
|
|
|
|
save_dir = Path("data") / category / "qa" |
|
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
|
filename = f"{subcategory}_{source}_{TOTAL_QA_PAIRS}_{timestamp}.json" |
|
|
filename = re.sub(r'[^\w\s-]', '', filename).replace(' ', '_') |
|
|
|
|
|
qa_data = { |
|
|
"question": question, |
|
|
"answer": answer, |
|
|
"category": category, |
|
|
"subcategory": subcategory, |
|
|
"source": source, |
|
|
"timestamp": timestamp, |
|
|
"attack_signatures": attack_signatures or [], |
|
|
"tags": tags or [] |
|
|
} |
|
|
|
|
|
try: |
|
|
with open(save_dir / filename, "w", encoding="utf-8") as f: |
|
|
json.dump(qa_data, f, indent=2, ensure_ascii=False) |
|
|
|
|
|
config.TOTAL_QA_PAIRS += 1 |
|
|
st.session_state.total_qa_pairs = config.TOTAL_QA_PAIRS |
|
|
st.session_state.qa_data.append(qa_data) |
|
|
|
|
|
logger.info(f"Paire Q/R sauvegardée: {filename} (Total: {config.TOTAL_QA_PAIRS})") |
|
|
st.session_state.logs.append(f"Sauvegardé: {filename}") |
|
|
except Exception as e: |
|
|
logger.error(f"Erreur lors de la sauvegarde du fichier {filename}: {str(e)}") |
|
|
|
|
|
def collect_kaggle_data(queries): |
|
|
logger.info("Début de la collecte des données Kaggle...") |
|
|
kaggle_dir = Path(".kaggle") |
|
|
kaggle_json = kaggle_dir / "kaggle.json" |
|
|
if not kaggle_json.exists(): |
|
|
logger.warning("Fichier kaggle.json non trouvé. Veuillez le placer dans le dossier .kaggle/") |
|
|
return |
|
|
|
|
|
os.environ['KAGGLE_CONFIG_DIR'] = str(kaggle_dir.absolute()) |
|
|
|
|
|
try: |
|
|
kaggle.api.authenticate() |
|
|
except Exception as e: |
|
|
logger.error(f"Erreur d'authentification Kaggle: {str(e)}") |
|
|
return |
|
|
|
|
|
search_queries = queries.split('\n') if queries else ["cybersecurity", "vulnerability"] |
|
|
|
|
|
if ia_enricher.available and st.session_state.enable_enrichment: |
|
|
adaptive_queries = ia_enricher.generate_adaptive_queries("Initial data keywords: " + ", ".join(search_queries)) |
|
|
search_queries.extend(adaptive_queries) |
|
|
|
|
|
for query in list(set(search_queries)): |
|
|
logger.info(f"Recherche de datasets Kaggle pour: {query}") |
|
|
try: |
|
|
datasets = kaggle.api.dataset_list(search=query, max_results=5) |
|
|
for dataset in datasets: |
|
|
dataset_ref = dataset.ref |
|
|
if ia_enricher.available and st.session_state.enable_enrichment: |
|
|
is_relevant, _, _, relevance_score = ia_enricher.analyze_content_relevance(dataset.title + " " + dataset.subtitle) |
|
|
if not is_relevant or relevance_score < st.session_state.min_relevance: |
|
|
logger.info(f"Dataset non pertinent ({relevance_score}%): {dataset_ref}. Ignoré.") |
|
|
continue |
|
|
|
|
|
logger.info(f"Traitement du dataset: {dataset_ref}") |
|
|
download_dir = Path("data") / "security" / "kaggle" / dataset_ref.replace('/', '_') |
|
|
download_dir.mkdir(parents=True, exist_ok=True) |
|
|
kaggle.api.dataset_download_files(dataset_ref, path=download_dir, unzip=True) |
|
|
|
|
|
for file_path in download_dir.glob('*'): |
|
|
if file_path.is_file() and file_path.suffix.lower() in ['.json', '.csv', '.txt']: |
|
|
try: |
|
|
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: |
|
|
file_content = f.read()[:5000] |
|
|
is_relevant, signatures, security_tags, _ = ia_enricher.analyze_content_relevance(file_content) |
|
|
if is_relevant: |
|
|
save_qa_pair( |
|
|
question=f"Quelles informations de sécurité contient le fichier {file_path.name} du dataset '{dataset.title}'?", |
|
|
answer=file_content, category="security", subcategory="vulnerability", |
|
|
source=f"kaggle_{dataset_ref}", attack_signatures=signatures, tags=security_tags |
|
|
) |
|
|
except Exception as e: |
|
|
logger.error(f"Erreur lors du traitement du fichier {file_path}: {str(e)}") |
|
|
time.sleep(random.uniform(2, 4)) |
|
|
except Exception as e: |
|
|
logger.error(f"Erreur lors de la collecte des données Kaggle pour {query}: {str(e)}") |
|
|
logger.info("Collecte des données Kaggle terminée.") |
|
|
|
|
|
def collect_github_data(queries): |
|
|
logger.info("Début de la collecte des données GitHub...") |
|
|
base_url = "https://api.github.com" |
|
|
headers = {"Accept": "application/vnd.github.v3+json"} |
|
|
if config.USE_API_KEYS: |
|
|
token = os.getenv('GITHUB_API_TOKEN') |
|
|
headers["Authorization"] = f"token {token}" |
|
|
|
|
|
search_queries = queries.split('\n') if queries else ["topic:devsecops", "topic:security"] |
|
|
|
|
|
for query in search_queries: |
|
|
logger.info(f"Recherche de repositories pour: {query}") |
|
|
search_url = f"{base_url}/search/repositories" |
|
|
params = {"q": query, "sort": "stars", "per_page": 10} |
|
|
response = make_request(search_url, headers=headers, params=params) |
|
|
if not response: |
|
|
continue |
|
|
|
|
|
data = response.json() |
|
|
for repo in data.get("items", []): |
|
|
repo_name = repo["full_name"].replace("/", "_") |
|
|
logger.info(f"Traitement du repository: {repo['full_name']}") |
|
|
|
|
|
issues_url = f"{base_url}/repos/{repo['full_name']}/issues" |
|
|
issues_params = {"state": "closed", "labels": "security,bug,vulnerability", "per_page": 10} |
|
|
issues_response = make_request(issues_url, headers=headers, params=issues_params) |
|
|
|
|
|
if issues_response: |
|
|
issues_data = issues_response.json() |
|
|
for issue in issues_data: |
|
|
if "pull_request" in issue: continue |
|
|
question = issue.get("title", "") |
|
|
body = clean_html(issue.get("body", "")) |
|
|
if not question or not body or len(body) < 50: continue |
|
|
|
|
|
comments_url = issue.get("comments_url") |
|
|
comments_response = make_request(comments_url, headers=headers) |
|
|
answer_parts = [] |
|
|
if comments_response: |
|
|
comments_data = comments_response.json() |
|
|
for comment in comments_data: |
|
|
comment_body = clean_html(comment.get("body", "")) |
|
|
if comment_body: answer_parts.append(comment_body) |
|
|
|
|
|
if answer_parts: |
|
|
answer = "\n\n".join(answer_parts) |
|
|
save_qa_pair( |
|
|
question=f"{question}: {body}", answer=answer, category="devsecops", |
|
|
subcategory="github", source=f"github_{repo_name}" |
|
|
) |
|
|
time.sleep(random.uniform(1, 3)) |
|
|
logger.info("Collecte des données GitHub terminée.") |
|
|
|
|
|
def collect_huggingface_data(queries): |
|
|
logger.info("Début de la collecte des données Hugging Face...") |
|
|
base_url = "https://huggingface.co/api" |
|
|
headers = {"Accept": "application/json"} |
|
|
if config.USE_API_KEYS: |
|
|
token = os.getenv('HUGGINGFACE_API_TOKEN') |
|
|
headers["Authorization"] = f"Bearer {token}" |
|
|
|
|
|
search_queries = queries.split('\n') if queries else ["security", "devsecops"] |
|
|
for query in search_queries: |
|
|
logger.info(f"Recherche de datasets pour: {query}") |
|
|
search_url = f"{base_url}/datasets" |
|
|
params = {"search": query, "limit": 10} |
|
|
response = make_request(search_url, headers=headers, params=params) |
|
|
if not response: continue |
|
|
|
|
|
data = response.json() |
|
|
for dataset in data: |
|
|
dataset_id = dataset["id"].replace("/", "_") |
|
|
logger.info(f"Traitement du dataset: {dataset['id']}") |
|
|
dataset_url = f"{base_url}/datasets/{dataset['id']}" |
|
|
dataset_response = make_request(dataset_url, headers=headers) |
|
|
|
|
|
if dataset_response: |
|
|
dataset_data = dataset_response.json() |
|
|
description = clean_html(dataset_data.get("description", "")) |
|
|
if not description or len(description) < 100: continue |
|
|
tags = dataset_data.get("tags", []) |
|
|
tags_text = ", ".join(tags) if tags else "No tags" |
|
|
answer = f"Dataset: {dataset_data.get('id', '')}\nDownloads: {dataset_data.get('downloads', 0)}\nTags: {tags_text}\n\n{description}" |
|
|
|
|
|
save_qa_pair( |
|
|
question=f"What is the {dataset_data.get('id', '')} dataset about?", answer=answer, |
|
|
category="security", subcategory="dataset", source=f"huggingface_{dataset_id}", tags=tags |
|
|
) |
|
|
time.sleep(random.uniform(1, 3)) |
|
|
logger.info("Collecte des données Hugging Face terminée.") |
|
|
|
|
|
def collect_nvd_data(): |
|
|
logger.info("Début de la collecte des données NVD...") |
|
|
base_url = "https://services.nvd.nist.gov/rest/json/cves/2.0" |
|
|
headers = {"Accept": "application/json"} |
|
|
if config.USE_API_KEYS: |
|
|
key = os.getenv('NVD_API_KEY') |
|
|
headers["apiKey"] = key |
|
|
|
|
|
params = {"resultsPerPage": 50} |
|
|
response = make_request(base_url, headers=headers, params=params) |
|
|
if not response: |
|
|
logger.warning("Impossible de récupérer les données du NVD.") |
|
|
return |
|
|
|
|
|
data = response.json() |
|
|
vulnerabilities = data.get("vulnerabilities", []) |
|
|
logger.info(f"Traitement de {len(vulnerabilities)} vulnérabilités...") |
|
|
|
|
|
for vuln in vulnerabilities: |
|
|
cve_data = vuln.get("cve", {}) |
|
|
cve_id = cve_data.get("id", "") |
|
|
descriptions = cve_data.get("descriptions", []) |
|
|
description = next((desc.get("value", "") for desc in descriptions if desc.get("lang") == "en"), "") |
|
|
if not description or len(description) < 50: continue |
|
|
|
|
|
cvss_v3 = cve_data.get("metrics", {}).get("cvssMetricV31", [{}])[0].get("cvssData", {}) |
|
|
severity = cvss_v3.get("baseSeverity", "UNKNOWN") |
|
|
score = cvss_v3.get("baseScore", 0) |
|
|
references = [ref.get("url", "") for ref in cve_data.get("references", [])] |
|
|
|
|
|
answer = f"CVE ID: {cve_id}\nSeverity: {severity}\nCVSS Score: {score}\nReferences: {', '.join(references[:5])}\n\nDescription: {description}" |
|
|
|
|
|
save_qa_pair( |
|
|
question=f"What is the vulnerability {cve_id}?", answer=answer, |
|
|
category="security", subcategory="vulnerability", source=f"nvd_{cve_id}" |
|
|
) |
|
|
logger.info("Collecte des données NVD terminée.") |
|
|
|
|
|
def collect_stack_exchange_data(queries): |
|
|
logger.info("Début de la collecte des données Stack Exchange...") |
|
|
base_url = "https://api.stackexchange.com/2.3" |
|
|
params_base = {"pagesize": 10, "order": "desc", "sort": "votes", "filter": "withbody"} |
|
|
if config.USE_API_KEYS: |
|
|
key = os.getenv('STACK_EXCHANGE_API_KEY') |
|
|
params_base["key"] = key |
|
|
|
|
|
sites = [ |
|
|
{"site": "security", "category": "security", "subcategory": "security"}, |
|
|
{"site": "devops", "category": "devsecops", "subcategory": "devops"} |
|
|
] |
|
|
|
|
|
tags_by_site = { |
|
|
"security": ["security", "vulnerability"], |
|
|
"devops": ["devops", "ci-cd"] |
|
|
} |
|
|
|
|
|
for site_config in sites: |
|
|
site = site_config["site"] |
|
|
category = site_config["category"] |
|
|
subcategory = site_config["subcategory"] |
|
|
logger.info(f"Collecte des données du site: {site}") |
|
|
tags = tags_by_site.get(site, []) + (queries.split('\n') if queries else []) |
|
|
|
|
|
for tag in list(set(tags)): |
|
|
logger.info(f"Recherche de questions avec le tag: {tag}") |
|
|
questions_url = f"{base_url}/questions" |
|
|
params = {**params_base, "site": site, "tagged": tag} |
|
|
|
|
|
response = make_request(questions_url, params=params) |
|
|
if not response: continue |
|
|
|
|
|
questions_data = response.json() |
|
|
for question in questions_data.get("items", []): |
|
|
question_id = question.get("question_id") |
|
|
title = question.get("title", "") |
|
|
body = clean_html(question.get("body", "")) |
|
|
if not body or len(body) < 50: continue |
|
|
|
|
|
answers_url = f"{base_url}/questions/{question_id}/answers" |
|
|
answers_params = {**params_base, "site": site} |
|
|
answers_response = make_request(answers_url, params=answers_params) |
|
|
answer_body = "" |
|
|
if answers_response and answers_response.json().get("items"): |
|
|
answer_body = clean_html(answers_response.json()["items"][0].get("body", "")) |
|
|
|
|
|
if answer_body: |
|
|
save_qa_pair( |
|
|
question=title, answer=answer_body, category=category, |
|
|
subcategory=subcategory, source=f"{site}_{question_id}", tags=question.get("tags", []) |
|
|
) |
|
|
time.sleep(random.uniform(1, 3)) |
|
|
logger.info("Collecte des données Stack Exchange terminée.") |
|
|
|
|
|
def run_data_collection(sources, queries): |
|
|
st.session_state.bot_status = "En cours d'exécution" |
|
|
st.session_state.logs = [] |
|
|
|
|
|
check_api_keys() |
|
|
|
|
|
progress_bar = st.progress(0) |
|
|
status_text = st.empty() |
|
|
|
|
|
enabled_sources = [s for s, enabled in sources.items() if enabled] |
|
|
total_sources = len(enabled_sources) |
|
|
completed_sources = 0 |
|
|
|
|
|
for source_name in enabled_sources: |
|
|
status_text.text(f"Collecte des données de {source_name}...") |
|
|
try: |
|
|
if source_name == "Kaggle": |
|
|
collect_kaggle_data(queries.get("Kaggle", "")) |
|
|
elif source_name == "GitHub": |
|
|
collect_github_data(queries.get("GitHub", "")) |
|
|
elif source_name == "Hugging Face": |
|
|
collect_huggingface_data(queries.get("Hugging Face", "")) |
|
|
elif source_name == "NVD": |
|
|
collect_nvd_data() |
|
|
elif source_name == "Stack Exchange": |
|
|
collect_stack_exchange_data(queries.get("Stack Exchange", "")) |
|
|
except Exception as e: |
|
|
logger.error(f"Erreur fatale lors de la collecte de {source_name}: {str(e)}") |
|
|
|
|
|
completed_sources += 1 |
|
|
progress_bar.progress(completed_sources / total_sources) |
|
|
|
|
|
st.session_state.bot_status = "Terminé" |
|
|
status_text.text(f"Collecte terminée. Total de paires Q/R sauvegardées: {st.session_state.total_qa_pairs}") |
|
|
|
|
|
def create_visualizations(): |
|
|
if not st.session_state.qa_data: |
|
|
st.info("Aucune donnée à visualiser. Lancez d'abord la collecte de données.") |
|
|
return |
|
|
|
|
|
df = pd.DataFrame(st.session_state.qa_data) |
|
|
|
|
|
st.subheader("Répartition des données par catégorie") |
|
|
category_counts = df['category'].value_counts() |
|
|
fig1 = px.pie(values=category_counts.values, names=category_counts.index, title="Répartition par catégorie") |
|
|
st.plotly_chart(fig1, use_container_width=True) |
|
|
|
|
|
st.subheader("Répartition des données par sous-catégorie") |
|
|
subcategory_counts = df['subcategory'].value_counts().head(10) |
|
|
fig2 = px.bar(x=subcategory_counts.values, y=subcategory_counts.index, orientation='h', |
|
|
title="Top 10 des sous-catégories", labels={'x': 'Nombre de paires Q/R', 'y': 'Sous-catégorie'}) |
|
|
st.plotly_chart(fig2, use_container_width=True) |
|
|
|
|
|
st.subheader("Répartition des données par source") |
|
|
source_counts = df['source'].value_counts().head(10) |
|
|
fig3 = px.bar(x=source_counts.values, y=source_counts.index, orientation='h', |
|
|
title="Top 10 des sources", labels={'x': 'Nombre de paires Q/R', 'y': 'Source'}) |
|
|
st.plotly_chart(fig3, use_container_width=True) |
|
|
|
|
|
st.subheader("Tags les plus fréquents") |
|
|
all_tags = [tag for tags_list in df['tags'] for tag in tags_list] |
|
|
if all_tags: |
|
|
tag_counts = pd.Series(all_tags).value_counts().head(15) |
|
|
fig5 = px.bar(x=tag_counts.values, y=tag_counts.index, orientation='h', |
|
|
title="Top 15 des tags", labels={'x': 'Fréquence', 'y': 'Tag'}) |
|
|
st.plotly_chart(fig5, use_container_width=True) |
|
|
|
|
|
st.subheader("Signatures d'attaques les plus fréquentes") |
|
|
all_signatures = [sig for sigs_list in df['attack_signatures'] for sig in sigs_list] |
|
|
if all_signatures: |
|
|
signature_counts = pd.Series(all_signatures).value_counts().head(15) |
|
|
fig6 = px.bar(x=signature_counts.values, y=signature_counts.index, orientation='h', |
|
|
title="Top 15 des signatures d'attaques", labels={'x': 'Fréquence', 'y': 'Signature'}) |
|
|
st.plotly_chart(fig6, use_container_width=True) |
|
|
|
|
|
def main(): |
|
|
create_initial_setup() |
|
|
|
|
|
st.title("🤖 DevSecOps Data Bot") |
|
|
st.markdown("---") |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
|
with col1: |
|
|
st.metric("Statut du bot", st.session_state.bot_status) |
|
|
with col2: |
|
|
check_server_status() |
|
|
st.metric("Statut du serveur llama.cpp", st.session_state.server_status) |
|
|
with col3: |
|
|
st.metric("Paires Q/R collectées", st.session_state.total_qa_pairs) |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
tab1, tab2, tab3, tab4 = st.tabs(["Réglages", "Collecte", "Traitement IA", "Résultats"]) |
|
|
|
|
|
with tab1: |
|
|
st.header("Réglages") |
|
|
subtab1, subtab2, subtab3 = st.tabs(["Clés d'API", "Serveur llama.cpp", "Performance"]) |
|
|
|
|
|
with subtab1: |
|
|
st.subheader("Clés d'API") |
|
|
github_token = st.text_input("GitHub API Token", value=os.getenv('GITHUB_API_TOKEN', ''), type="password") |
|
|
huggingface_token = st.text_input("Hugging Face API Token", value=os.getenv('HUGGINGFACE_API_TOKEN', ''), type="password") |
|
|
nvd_api_key = st.text_input("NVD API Key", value=os.getenv('NVD_API_KEY', ''), type="password") |
|
|
stack_exchange_key = st.text_input("Stack Exchange API Key", value=os.getenv('STACK_EXCHANGE_API_KEY', ''), type="password") |
|
|
|
|
|
if st.button("Sauvegarder les clés d'API"): |
|
|
with open(config.env_path, 'w') as f: |
|
|
f.write(f"GITHUB_API_TOKEN={github_token}\n") |
|
|
f.write(f"HUGGINGFACE_API_TOKEN={huggingface_token}\n") |
|
|
f.write(f"NVD_API_KEY={nvd_api_key}\n") |
|
|
f.write(f"STACK_EXCHANGE_API_KEY={stack_exchange_key}\n") |
|
|
f.write(f"LLM_SERVER_URL={os.getenv('LLM_SERVER_URL', 'http://localhost:8080/completion')}\n") |
|
|
|
|
|
config.load_dotenv(dotenv_path=config.env_path) |
|
|
check_api_keys() |
|
|
st.success("Clés d'API sauvegardées!") |
|
|
|
|
|
with subtab2: |
|
|
st.subheader("Serveur llama.cpp") |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
with col1: |
|
|
if st.button("Démarrer le serveur"): |
|
|
start_llm_server() |
|
|
with col2: |
|
|
if st.button("Arrêter le serveur"): |
|
|
stop_llm_server() |
|
|
|
|
|
st.markdown(f"**Statut actuel:** `{st.session_state.server_status}`") |
|
|
|
|
|
llm_url = st.text_input("URL du serveur LLM", value=config.LLM_SERVER_URL) |
|
|
if st.button("Mettre à jour l'URL"): |
|
|
config.LLM_SERVER_URL = llm_url |
|
|
os.environ['LLM_SERVER_URL'] = llm_url |
|
|
st.success("URL mise à jour!") |
|
|
|
|
|
with subtab3: |
|
|
st.subheader("Paramètres de performance") |
|
|
max_requests = st.number_input("Nombre de requêtes avant pause", value=config.MAX_REQUESTS_BEFORE_PAUSE) |
|
|
min_pause = st.number_input("Pause minimum (secondes)", value=config.MIN_PAUSE) |
|
|
max_pause = st.number_input("Pause maximum (secondes)", value=config.MAX_PAUSE) |
|
|
|
|
|
if st.button("Sauvegarder les paramètres"): |
|
|
config.MAX_REQUESTS_BEFORE_PAUSE = max_requests |
|
|
config.MIN_PAUSE = min_pause |
|
|
config.MAX_PAUSE = max_pause |
|
|
st.success("Paramètres sauvegardés!") |
|
|
|
|
|
with tab2: |
|
|
st.header("Collecte de données") |
|
|
|
|
|
sources = { |
|
|
"Kaggle": st.checkbox("Kaggle", value=True), |
|
|
"GitHub": st.checkbox("GitHub", value=True), |
|
|
"Hugging Face": st.checkbox("Hugging Face", value=True), |
|
|
"NVD": st.checkbox("NVD", value=True), |
|
|
"Stack Exchange": st.checkbox("Stack Exchange", value=True) |
|
|
} |
|
|
|
|
|
st.subheader("Requêtes de recherche") |
|
|
queries = { |
|
|
"Kaggle": st.text_area("Requêtes Kaggle (une par ligne)", value="cybersecurity\nvulnerability"), |
|
|
"GitHub": st.text_area("Requêtes GitHub (une par ligne)", value="topic:devsecops\ntopic:security"), |
|
|
"Hugging Face": st.text_area("Requêtes Hugging Face (une par ligne)", value="security\ndevsecops"), |
|
|
"Stack Exchange": st.text_area("Requêtes Stack Exchange (une par ligne)", value="security\nvulnerability") |
|
|
} |
|
|
|
|
|
if st.button("Lancer la collecte"): |
|
|
run_data_collection(sources, queries) |
|
|
|
|
|
with tab3: |
|
|
st.header("Traitement IA") |
|
|
enable_enrichment = st.checkbox("Activer l'enrichissement IA", value=st.session_state.enable_enrichment) |
|
|
st.session_state.enable_enrichment = enable_enrichment |
|
|
|
|
|
if enable_enrichment: |
|
|
st.session_state.min_relevance = st.slider("Score de pertinence minimum", 0, 100, st.session_state.min_relevance) |
|
|
st.session_state.num_queries = st.number_input("Nombre de nouvelles requêtes", value=st.session_state.num_queries) |
|
|
|
|
|
st.subheader("Paramètres du LLM") |
|
|
st.session_state.temperature = st.slider("Température", 0.0, 1.0, 0.7) |
|
|
st.session_state.n_predict = st.number_input("Nombre de tokens de prédiction", value=512) |
|
|
|
|
|
prompts = load_prompts() |
|
|
st.subheader("Prompts") |
|
|
for task, task_data in prompts.items(): |
|
|
st.write(f"**{task}**") |
|
|
st.text_area(f"System Prompt - {task}", value=task_data.get("system", ""), height=100, key=f"system_{task}") |
|
|
st.text_area(f"Prompt Template - {task}", value=task_data.get("prompt_template", ""), height=150, key=f"template_{task}") |
|
|
|
|
|
if st.button("Sauvegarder les prompts"): |
|
|
updated_prompts = { |
|
|
task: { |
|
|
"system": st.session_state[f"system_{task}"], |
|
|
"prompt_template": st.session_state[f"template_{task}"] |
|
|
} for task in prompts |
|
|
} |
|
|
with open("config/prompts.json", 'w') as f: |
|
|
json.dump(updated_prompts, f, indent=2) |
|
|
global PROMPTS |
|
|
PROMPTS = load_prompts() |
|
|
st.success("Prompts sauvegardés!") |
|
|
|
|
|
with tab4: |
|
|
st.header("Résultats") |
|
|
subtab1, subtab2, subtab3 = st.tabs(["Visualisations", "Données", "Logs"]) |
|
|
|
|
|
with subtab1: |
|
|
create_visualizations() |
|
|
with subtab2: |
|
|
st.subheader("Aperçu des données") |
|
|
if st.session_state.qa_data: |
|
|
df = pd.DataFrame(st.session_state.qa_data) |
|
|
st.dataframe(df.tail(10)) |
|
|
|
|
|
st.subheader("Téléchargement des données") |
|
|
col1, col2 = st.columns(2) |
|
|
with col1: |
|
|
json_data = json.dumps(st.session_state.qa_data, indent=2) |
|
|
st.download_button(label="Télécharger JSON", data=json_data, file_name=f"devsecops_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json", mime="application/json") |
|
|
with col2: |
|
|
csv_data = df.to_csv(index=False) |
|
|
st.download_button(label="Télécharger CSV", data=csv_data, file_name=f"devsecops_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv", mime="text/csv") |
|
|
else: |
|
|
st.info("Aucune donnée à afficher. Lancez d'abord la collecte.") |
|
|
with subtab3: |
|
|
st.subheader("Logs d'exécution") |
|
|
for log in st.session_state.logs: |
|
|
st.text(log) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|