GoodWin's picture
Add files
0f691e2
raw
history blame
4.12 kB
# -- coding: utf-8 --
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
import os
import torchvision
# Converts a Tensor into an image array (numpy)
# |imtype|: the desired type of the converted numpy array
def tensor2im(input_image, norm=1, imtype=np.uint8):
if isinstance(input_image, torch.Tensor):
image_tensor = input_image.data
else:
return input_image
if norm == 1: #for clamp -1 to 1
image_numpy = image_tensor[0].cpu().float().clamp_(-1,1).numpy()
elif norm == 2: # for norm through max-min
image_ = image_tensor[0].cpu().float()
max_ = torch.max(image_)
min_ = torch.min(image_)
image_numpy = (image_ - min_)/(max_-min_)*2-1
image_numpy = image_numpy.numpy()
else:
pass
if image_numpy.shape[0] == 1:
image_numpy = np.tile(image_numpy, (3, 1, 1))
# print(image_numpy.shape)
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
# print(image_numpy.shape)
return image_numpy.astype(imtype)
def tensor2im3Channels(input_image, imtype=np.uint8):
if isinstance(input_image, torch.Tensor):
image_tensor = input_image.data
else:
return input_image
image_numpy = image_tensor.cpu().float().clamp_(-1,1).numpy()
# print(image_numpy.shape)
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
# print(image_numpy.shape)
return image_numpy.astype(imtype)
def diagnose_network(net, name='network'):
mean = 0.0
count = 0
for param in net.parameters():
if param.grad is not None:
mean += torch.mean(torch.abs(param.grad.data))
count += 1
if count > 0:
mean = mean / count
print(name)
print(mean)
def print_numpy(x, val=True, shp=False):
x = x.astype(np.float64)
if shp:
print('shape,', x.shape)
if val:
x = x.flatten()
print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))
def mkdirs(paths):
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def print_current_losses(epoch, i, losses, t, t_data):
message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, i, t, t_data)
for k, v in losses.items():
message += '%s: %.3f ' % (k, v)
print(message)
# with open('', "a") as log_file:
# log_file.write('%s\n' % message)
def display_current_results(writer,visuals,losses,step,save_result):
for label, images in visuals.items():
if 'Mask' in label:# or 'Scale' in label:
grid = torchvision.utils.make_grid(images,normalize=False, scale_each=True)
# pass
else:
pass
grid = torchvision.utils.make_grid(images,normalize=True, scale_each=True)
writer.add_image(label,grid,step)
for k,v in losses.items():
writer.add_scalar(k,v,step)
def VisualFeature(input_feature, imtype=np.uint8):
if isinstance(input_feature, torch.Tensor):
image_tensor = input_feature.data
else:
return input_feature
image_ = image_tensor.cpu().float()
if image_.size(1) == 3:
image_ = image_.permute(1,2,0)
# assert(image_.size(1) == 1)
#####norm 0 to 1
max_ = torch.max(image_)
min_ = torch.min(image_)
image_numpy = (image_ - min_)/(max_-min_)*2-1
image_numpy = image_numpy.numpy()
image_numpy = (image_numpy + 1) / 2.0 * 255.0
#####no norm
# print((max_,min_))
# image_numpy = image_.numpy()
# image_numpy = image_numpy*255.0
# print('wwwwwwwwwwwwww')
# print(max_)
# print(min_)
# print(image_numpy.shape)
return image_numpy.astype(imtype)
def save_image(image_numpy, image_path):
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)