FYP_ASR_Service / analyzer /ASR_en_us.py
HK0712's picture
final fxied 1 word > 2 ipa issue
c2784ee
import torch
import soundfile as sf
import librosa
# 【【【【【 修改 #1:從 transformers 匯入 AutoProcessor 和 AutoModelForCTC 】】】】】
from transformers import AutoProcessor, AutoModelForCTC
import os
from phonemizer import phonemize
import numpy as np
from datetime import datetime, timezone
# --- 全域設定 (已修改) ---
# 移除了全域的 processor 和 model 變數。
# 刪除了舊的 load_model() 函數。
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"INFO: ASR_en_us.py is configured to use device: {DEVICE}")
# 【【【【【 修改 #2:更新為最終選定的 KoelLabs 模型名稱 】】】】】
MODEL_NAME = "KoelLabs/xlsr-english-01"
# 【【【【【 新增程式碼 #1:為 KoelLabs 模型設計的 IPA 正規化器 】】】】】
# 【保持不變】
def normalize_koel_ipa(raw_phonemes: list) -> list:
"""
將 KoelLabs 模型輸出的高級 IPA 序列,正規化為與 eSpeak 輸出可比的基礎 IPA 序列。
"""
normalized_phonemes = []
for phoneme in raw_phonemes:
if not phoneme:
continue
base_phoneme = phoneme.replace('ʰ', '').replace('̃', '').replace('̥', '')
if base_phoneme == 'β':
base_phoneme = 'v'
elif base_phoneme in ['x', 'ɣ', 'ɦ']:
base_phoneme = 'h'
normalized_phonemes.append(base_phoneme)
return normalized_phonemes
# --- 2. 智能 IPA 切分函數 (與您的原版邏輯完全相同) ---
# 【保持不變】
MULTI_CHAR_PHONEMES = {
'tʃ', 'dʒ',
'eɪ', 'aɪ', 'oʊ', 'aʊ', 'ɔɪ',
'ɪə', 'eə', 'ʊə', 'ər'
}
def _tokenize_ipa(ipa_string: str) -> list:
"""
將 IPA 字串智能地切分為音素列表,能正確處理多字元音素。
"""
s = ipa_string.replace(' ', '').replace('ˌ', '').replace('ˈ', '').replace('ː', '')
phonemes = []
i = 0
while i < len(s):
if i + 1 < len(s) and s[i:i+2] in MULTI_CHAR_PHONEMES:
phonemes.append(s[i:i+2])
i += 2
else:
phonemes.append(s[i])
i += 1
return phonemes
# 【【【【【 全新函式:智慧 G2P 歸屬邏輯 - 方案 B 版本 】】】】】
def _get_target_ipa_by_word(sentence: str) -> (list, list):
"""
使用「啟發式拆分」方法(方案B),將句子級 G2P 結果智慧地歸屬到每個單字。
"""
original_words = sentence.strip().split()
# 1. 獲取句子級別的 G2P 結果
sentence_ipa_groups_raw = [s.strip('[]') for s in phonemize(sentence, language='en-us', backend='espeak', with_stress=True, strip=True).split()]
sentence_ipa_groups = [_tokenize_ipa(group) for group in sentence_ipa_groups_raw]
# 如果數量剛好匹配,直接返回,這是最理想的情況
if len(original_words) == len(sentence_ipa_groups):
print("G2P alignment perfect match. No heuristic needed.")
return original_words, sentence_ipa_groups
# 2. 數量不匹配,啟用啟發式歸屬邏輯
print(f"G2P Mismatch Detected: {len(original_words)} words vs {len(sentence_ipa_groups)} IPA groups. Applying heuristic splitting.")
# 獲取單字級別的 G2P 結果作為參考
word_ipas_reference = [_tokenize_ipa(phonemize(word, language='en-us', backend='espeak', strip=True)) for word in original_words]
final_ipa_by_word = []
word_idx = 0
ipa_group_idx = 0
while word_idx < len(original_words):
# 邊界檢查:如果句子級音標已經用完
if ipa_group_idx >= len(sentence_ipa_groups):
print(f"Warning: Ran out of sentence IPA groups. Appending reference IPA for '{original_words[word_idx]}'.")
final_ipa_by_word.append(word_ipas_reference[word_idx])
word_idx += 1
continue
current_word = original_words[word_idx]
current_ipa_group = sentence_ipa_groups[ipa_group_idx]
ref_ipa_len = len(word_ipas_reference[word_idx])
# 啟發式核心:如果當前句子級音標組比參考音標長,且這不是最後一個詞
if len(current_ipa_group) > ref_ipa_len and word_idx + 1 < len(original_words):
# 假設多出來的部分屬於下一個詞
print(f"Heuristic Split: Splitting IPA group for '{current_word}' and '{original_words[word_idx+1]}'.")
# 切分!
ipa_for_current_word = current_ipa_group[:ref_ipa_len]
ipa_for_next_word = current_ipa_group[ref_ipa_len:]
final_ipa_by_word.append(ipa_for_current_word)
final_ipa_by_word.append(ipa_for_next_word)
# 一次處理了兩個詞,所以索引都要加 2
word_idx += 2
ipa_group_idx += 1
else:
# 正常情況:長度匹配或無法應用啟發式規則
final_ipa_by_word.append(current_ipa_group)
word_idx += 1
ipa_group_idx += 1
# 最後的長度校驗,如果不匹配,證明啟發式失敗,執行最終回退
if len(final_ipa_by_word) != len(original_words):
print(f"Heuristic splitting failed (final count: {len(final_ipa_by_word)} vs {len(original_words)}). Falling back to word-by-word G2P for safety.")
return original_words, word_ipas_reference
print("Heuristic splitting successful.")
return original_words, final_ipa_by_word
# --- 3. 核心分析函數 (主入口) (已修改以整合正規化器和快取邏輯) ---
def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dict:
"""
接收音訊檔案路徑和目標句子,回傳詳細的發音分析字典。
模型會被載入並儲存在此函數獨立的 'cache' 中,實現狀態隔離。
"""
# 檢查快取中是否已有模型,如果沒有則載入
if "model" not in cache:
print(f"快取未命中 (ASR_en_us)。正在載入模型 '{MODEL_NAME}'...")
try:
cache["processor"] = AutoProcessor.from_pretrained(MODEL_NAME)
cache["model"] = AutoModelForCTC.from_pretrained(MODEL_NAME)
cache["model"].to(DEVICE)
print(f"模型 '{MODEL_NAME}' 已載入並快取。")
except Exception as e:
print(f"處理或載入模型 '{MODEL_NAME}' 時發生錯誤: {e}")
raise RuntimeError(f"Failed to load model '{MODEL_NAME}': {e}")
# 從此函數的獨立快取中獲取模型和處理器
processor = cache["processor"]
model = cache["model"]
# --- 【【【【【 主要修改點:使用新的智慧 G2P 函式 】】】】】 ---
target_words_original, target_ipa_by_word = _get_target_ipa_by_word(target_sentence)
try:
speech, sample_rate = sf.read(audio_file_path)
if sample_rate != 16000:
speech = librosa.resample(y=speech, orig_sr=sample_rate, target_sr=16000)
except Exception as e:
raise IOError(f"讀取或處理音訊時發生錯誤: {e}")
input_values = processor(speech, sampling_rate=16000, return_tensors="pt").input_values
input_values = input_values.to(DEVICE)
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
raw_user_ipa_str = processor.decode(predicted_ids[0])
raw_user_phonemes = raw_user_ipa_str.split(' ')
normalized_user_phonemes = normalize_koel_ipa(raw_user_phonemes)
user_ipa_full = "".join(normalized_user_phonemes)
word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word)
return _format_to_json_structure(word_alignments, target_sentence, target_words_original)
# --- 4. 對齊函數 (與您的原版邏輯完全相同) ---
# 【保持不變】
def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized):
"""
(已修改) 使用新的切分邏輯執行音素對齊。
"""
user_phonemes = _tokenize_ipa(user_phoneme_str)
target_phonemes_flat = []
word_boundaries_indices = []
current_idx = 0
for word_ipa_tokens in target_words_ipa_tokenized:
target_phonemes_flat.extend(word_ipa_tokens)
current_idx += len(word_ipa_tokens)
word_boundaries_indices.append(current_idx - 1)
dp = np.zeros((len(user_phonemes) + 1, len(target_phonemes_flat) + 1))
for i in range(1, len(user_phonemes) + 1): dp[i][0] = i
for j in range(1, len(target_phonemes_flat) + 1): dp[0][j] = j
for i in range(1, len(user_phonemes) + 1):
for j in range(1, len(target_phonemes_flat) + 1):
cost = 0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1
dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1, dp[i-1][j-1] + cost)
i, j = len(user_phonemes), len(target_phonemes_flat)
user_path, target_path = [], []
while i > 0 or j > 0:
cost = float('inf') if i == 0 or j == 0 else (0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1)
if i > 0 and j > 0 and dp[i][j] == dp[i-1][j-1] + cost:
user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, target_phonemes_flat[j-1]); i -= 1; j -= 1
elif i > 0 and dp[i][j] == dp[i-1][j] + 1:
user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, '-'); i -= 1
else:
user_path.insert(0, '-'); target_path.insert(0, target_phonemes_flat[j-1]); j -= 1
alignments_by_word = []
word_start_idx_in_path = 0
target_phoneme_counter_in_path = 0
num_words_to_align = len(target_words_ipa_tokenized)
current_word_idx = 0
if not target_path:
return []
for path_idx, p in enumerate(target_path):
if p != '-':
if target_phoneme_counter_in_path in word_boundaries_indices:
if current_word_idx < num_words_to_align:
target_alignment = target_path[word_start_idx_in_path : path_idx + 1]
user_alignment = user_path[word_start_idx_in_path : path_idx + 1]
alignments_by_word.append({
"target": target_alignment,
"user": user_alignment
})
word_start_idx_in_path = path_idx + 1
current_word_idx += 1
target_phoneme_counter_in_path += 1
if word_start_idx_in_path < len(target_path) and current_word_idx < num_words_to_align:
target_alignment = target_path[word_start_idx_in_path:]
user_alignment = user_path[word_start_idx_in_path:]
alignments_by_word.append({
"target": target_alignment,
"user": user_alignment
})
return alignments_by_word
# --- 5. 格式化函數 (與您的原版邏輯完全相同) ---
# 【保持不變】
def _format_to_json_structure(alignments, sentence, original_words) -> dict:
total_phonemes = 0
total_errors = 0
correct_words_count = 0
words_data = []
num_words_to_process = min(len(alignments), len(original_words))
for i in range(num_words_to_process):
alignment = alignments[i]
word_is_correct = True
phonemes_data = []
if not alignment or not alignment.get('target'):
word_is_correct = False
else:
for j in range(len(alignment['target'])):
target_phoneme = alignment['target'][j]
user_phoneme = alignment['user'][j]
is_match = (user_phoneme == target_phoneme)
phonemes_data.append({
"target": target_phoneme,
"user": user_phoneme,
"isMatch": is_match
})
if not is_match:
word_is_correct = False
if not (user_phoneme == '-' and target_phoneme == '-'):
total_errors += 1
total_phonemes += sum(1 for p in alignment['target'] if p != '-')
if word_is_correct and phonemes_data:
correct_words_count += 1
words_data.append({
"word": original_words[i],
"isCorrect": word_is_correct,
"phonemes": phonemes_data
})
total_words = len(original_words)
if len(words_data) < total_words:
for i in range(len(words_data), total_words):
missed_word_ipa_str = phonemize(original_words[i], language='en-us', backend='espeak', strip=True)
missed_word_ipa = _tokenize_ipa(missed_word_ipa_str)
phonemes_data = []
for p_ipa in missed_word_ipa:
phonemes_data.append({"target": p_ipa, "user": "-", "isMatch": False})
total_errors += 1
total_phonemes += 1
words_data.append({
"word": original_words[i],
"isCorrect": False,
"phonemes": phonemes_data
})
overall_score = (correct_words_count / total_words) * 100 if total_words > 0 else 0
phoneme_error_rate = (total_errors / total_phonemes) * 100 if total_phonemes > 0 else 0
final_result = {
"sentence": sentence,
"analysisTimestampUTC": datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S (UTC)'),
"summary": {
"overallScore": round(overall_score, 1),
"totalWords": total_words,
"correctWords": correct_words_count,
"phonemeErrorRate": round(phoneme_error_rate, 2),
"total_errors": total_errors,
"total_target_phonemes": total_phonemes
},
"words": words_data
}
return final_result