Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,215 Bytes
89be9f9 a1b3810 89be9f9 f606ed7 cf3bd3a 77e4f1f 78951dd cf3bd3a 78951dd a1b3810 610b0ca a1b3810 78951dd 77e4f1f cb8c873 8134cc8 f606ed7 78951dd 89be9f9 78951dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import streamlit as st
from tiger import tiger_predict, TARGET_LEN, NUCLEOTIDE_TOKENS
@st.cache
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
# title and instructions
st.title('TIGER Cas13 Efficacy Prediction')
st.session_state['userInput'] = ''
st.session_state['userInput'] = st.text_input('Enter a target transcript (or substring thereof):',
placeholder='Upper or lower case')
# input is too short
if len(st.session_state['userInput']) < TARGET_LEN:
transcript_len = len(st.session_state['userInput'])
st.write('Transcript length ({:d}) must be at least {:d} bases.'.format(transcript_len, TARGET_LEN))
# valid input
elif all([True if nt.upper() in NUCLEOTIDE_TOKENS.keys() else False for nt in st.session_state['userInput']]):
predictions = tiger_predict(st.session_state['userInput'])
st.write('Model predictions: ', predictions)
csv = convert_df(predictions)
st.download_button(label='Download CSV file', data=csv, file_name='tiger_predictions.csv', mime='text/csv')
# invalid input
else:
st.write('Nucleotides other than ACGT detected!')
|