File size: 1,215 Bytes
89be9f9
a1b3810
89be9f9
 
f606ed7
 
 
 
 
cf3bd3a
 
 
77e4f1f
78951dd
 
cf3bd3a
78951dd
a1b3810
610b0ca
a1b3810
78951dd
 
77e4f1f
cb8c873
8134cc8
f606ed7
 
78951dd
 
89be9f9
78951dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import streamlit as st
from tiger import tiger_predict, TARGET_LEN, NUCLEOTIDE_TOKENS


@st.cache
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv().encode('utf-8')


# title and instructions
st.title('TIGER Cas13 Efficacy Prediction')
st.session_state['userInput'] = ''
st.session_state['userInput'] = st.text_input('Enter a target transcript (or substring thereof):',
                                              placeholder='Upper or lower case')

# input is too short
if len(st.session_state['userInput']) < TARGET_LEN:
    transcript_len = len(st.session_state['userInput'])
    st.write('Transcript length ({:d}) must be at least {:d} bases.'.format(transcript_len, TARGET_LEN))

# valid input
elif all([True if nt.upper() in NUCLEOTIDE_TOKENS.keys() else False for nt in st.session_state['userInput']]):
    predictions = tiger_predict(st.session_state['userInput'])
    st.write('Model predictions: ', predictions)
    csv = convert_df(predictions)
    st.download_button(label='Download CSV file', data=csv, file_name='tiger_predictions.csv', mime='text/csv')

# invalid input
else:
    st.write('Nucleotides other than ACGT detected!')