VisionTSpp / app.py
Lefei's picture
Create app.py
f76da22 verified
raw
history blame
7.95 kB
# app.py
import os
import gradio as gr
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import einops
from huggingface_hub import snapshot_download
from visionts import VisionTSpp, freq_to_seasonality_list
# ========================
# 配置
# ========================
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
REPO_ID = "Lefei/VisionTSpp"
LOCAL_DIR = "./hf_models/VisionTSpp"
CKPT_PATH = os.path.join(LOCAL_DIR, "visiontspp_model.ckpt")
ARCH = 'mae_base' # 可选: 'mae_base', 'mae_large', 'mae_huge'
# 下载模型(Space 构建时执行一次)
if not os.path.exists(CKPT_PATH):
os.makedirs(LOCAL_DIR, exist_ok=True)
print("Downloading model from Hugging Face Hub...")
snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_DIR, local_dir_use_symlinks=False)
# 加载模型(全局加载一次)
model = VisionTSpp(
ARCH,
ckpt_path=CKPT_PATH,
quantile=True,
clip_input=True,
complete_no_clip=False,
color=True
).to(DEVICE)
print(f"Model loaded on {DEVICE}")
# ========================
# 核心预测与可视化函数
# ========================
def visual_ts(true, preds=None, lookback_len_visual=300, pred_len=96):
"""
可视化真实值 vs 预测值
true: [T, nvars]
preds: [T, nvars],与 true 对齐
"""
if isinstance(true, torch.Tensor):
true = true.cpu().numpy()
if isinstance(preds, torch.Tensor):
preds = preds.cpu().numpy()
nvars = true.shape[1]
FIG_WIDTH = 12
FIG_HEIGHT_PER_VAR = 1.8
FONT_S = 10
fig, axes = plt.subplots(
nrows=nvars, ncols=1, figsize=(FIG_WIDTH, nvars * FIG_HEIGHT_PER_VAR), sharex=True,
gridspec_kw={'height_ratios': [1] * nvars}
)
if nvars == 1:
axes = [axes]
lookback_len = true.shape[0] - pred_len
for i, ax in enumerate(axes):
ax.plot(true[:, i], label='Ground Truth', color='gray', linewidth=1.8)
if preds is not None:
ax.plot(np.arange(lookback_len, len(true)), preds[lookback_len:, i],
label='Prediction (Median)', color='blue', linewidth=1.8)
# 分隔线
y_min, y_max = ax.get_ylim()
ax.vlines(x=lookback_len, ymin=y_min, ymax=y_max,
colors='gray', linestyles='--', alpha=0.7, linewidth=1)
ax.set_yticks([])
ax.set_xticks([])
ax.text(0.005, 0.8, f'Var {i+1}', transform=ax.transAxes, fontsize=FONT_S, weight='bold')
# 图例
if preds is not None:
handles, labels = axes[0].get_legend_handles_labels()
fig.legend(handles, labels, loc='upper right', bbox_to_anchor=(0.9, 0.9), prop={'size': FONT_S})
# 计算 MSE/MAE
if preds is not None:
true_eval = true[-pred_len:]
pred_eval = preds[-pred_len:]
mse = np.mean((true_eval - pred_eval) ** 2)
mae = np.mean(np.abs(true_eval - pred_eval))
fig.suptitle(f'MSE: {mse:.4f}, MAE: {mae:.4f}', fontsize=12, y=0.95)
plt.subplots_adjust(hspace=0)
return fig # 返回 matplotlib figure
def predict_and_visualize(df, context_len=960, pred_len=394, freq="15Min"):
"""
输入: df (pandas.DataFrame),必须包含 'date' 列和其他数值列
输出: matplotlib 图像
"""
if 'date' in df.columns:
df['date'] = pd.to_datetime(df['date'])
df = df.set_index('date')
else:
# 如果没有 date 列,假设是纯数值序列
df = df.copy()
data = df.values # [T, nvars]
nvars = data.shape[1]
if data.shape[0] < context_len + pred_len:
raise ValueError(f"数据太短,至少需要 {context_len + pred_len} 行,当前只有 {data.shape[0]} 行。")
# 归一化(使用训练集前 70% 的统计量)
train_len = int(len(data) * 0.7)
x_mean = data[:train_len].mean(axis=0, keepdims=True)
x_std = data[:train_len].std(axis=0, keepdims=True) + 1e-8
data_norm = (data - x_mean) / x_std
# 取最后一段作为测试窗口
end_idx = len(data_norm)
start_idx = end_idx - (context_len + pred_len)
x = data_norm[start_idx:start_idx + context_len] # [context_len, nvars]
y_true = data_norm[start_idx + context_len:end_idx] # [pred_len, nvars]
# 设置周期性
periodicity_list = freq_to_seasonality_list(freq)
periodicity = periodicity_list[0] if periodicity_list else 1
color_list = [i % 3 for i in range(nvars)] # RGB 循环着色
# 更新模型配置
model.update_config(
context_len=context_len,
pred_len=pred_len,
periodicity=periodicity,
num_patch_input=7,
padding_mode='constant'
)
# 转为 tensor
x_tensor = torch.FloatTensor(x).unsqueeze(0).to(DEVICE) # [1, T, N]
y_true_tensor = torch.FloatTensor(y_true).unsqueeze(0).to(DEVICE)
# 预测
with torch.no_grad():
y_pred, _, _, _, _ = model.forward(x_tensor, export_image=True, color_list=color_list)
y_pred_median = y_pred[0] # median prediction
# 反归一化
y_true_original = y_true * x_std + x_mean
y_pred_original = y_pred_median[0].cpu().numpy() * x_std + x_mean
# 构造完整序列用于可视化
full_true = np.concatenate([x * x_std + x_mean, y_true_original], axis=0)
full_pred = np.concatenate([x * x_std + x_mean, y_pred_original], axis=0)
# 可视化
fig = visual_ts(true=full_true, preds=full_pred, lookback_len_visual=context_len, pred_len=pred_len)
return fig
# ========================
# 默认数据加载
# ========================
def load_default_data():
data_path = "./datasets/ETTm1.csv"
if not os.path.exists(data_path):
os.makedirs("./datasets", exist_ok=True)
url = "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTm1.csv"
df = pd.read_csv(url)
df.to_csv(data_path, index=False)
else:
df = pd.read_csv(data_path)
return df
# ========================
# Gradio 界面
# ========================
def run_forecast(file_input, context_len, pred_len, freq):
if file_input is not None:
df = pd.read_csv(file_input.name)
title = "Uploaded Data Prediction"
else:
df = load_default_data()
title = "Default ETTm1 Dataset Prediction"
try:
fig = predict_and_visualize(df, context_len=int(context_len), pred_len=int(pred_len), freq=freq)
fig.suptitle(title, fontsize=14, y=0.98)
plt.close(fig) # 防止重复显示
return fig
except Exception as e:
# 返回错误信息图像
fig, ax = plt.subplots()
ax.text(0.5, 0.5, f"Error: {str(e)}", ha='center', va='center', wrap=True)
ax.axis('off')
plt.close(fig)
return fig
# Gradio UI
with gr.Blocks(title="VisionTS++ 时间序列预测") as demo:
gr.Markdown("# 🕰️ VisionTS++ 时间序列预测平台")
gr.Markdown("上传你的多变量时间序列 CSV 文件,或使用默认 ETTm1 数据进行预测。")
with gr.Row():
file_input = gr.File(label="上传 CSV 文件(含 date 列或纯数值)", file_types=['.csv'])
with gr.Column():
context_len = gr.Number(label="历史长度 (context_len)", value=960)
pred_len = gr.Number(label="预测长度 (pred_len)", value=394)
freq = gr.Textbox(label="时间频率 (如 15Min, H)", value="15Min")
btn = gr.Button("🚀 开始预测")
output_plot = gr.Plot(label="预测结果")
btn.click(
fn=run_forecast,
inputs=[file_input, context_len, pred_len, freq],
outputs=output_plot
)
# 示例:使用默认数据
gr.Examples(
examples=[
[None, 960, 394, "15Min"]
],
inputs=[file_input, context_len, pred_len, freq],
outputs=output_plot,
fn=run_forecast,
label="点击运行默认示例"
)
# 启动
if __name__ == "__main__":
demo.launch()