Spaces:
Running
Running
| # app.py | |
| import os | |
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| import pandas as pd | |
| import matplotlib.pyplot as plt | |
| import einops | |
| from huggingface_hub import snapshot_download | |
| from visionts import VisionTSpp, freq_to_seasonality_list | |
| # ======================== | |
| # 配置 | |
| # ======================== | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| REPO_ID = "Lefei/VisionTSpp" | |
| LOCAL_DIR = "./hf_models/VisionTSpp" | |
| CKPT_PATH = os.path.join(LOCAL_DIR, "visiontspp_model.ckpt") | |
| ARCH = 'mae_base' # 可选: 'mae_base', 'mae_large', 'mae_huge' | |
| # 下载模型(Space 构建时执行一次) | |
| if not os.path.exists(CKPT_PATH): | |
| os.makedirs(LOCAL_DIR, exist_ok=True) | |
| print("Downloading model from Hugging Face Hub...") | |
| snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_DIR, local_dir_use_symlinks=False) | |
| # 加载模型(全局加载一次) | |
| model = VisionTSpp( | |
| ARCH, | |
| ckpt_path=CKPT_PATH, | |
| quantile=True, | |
| clip_input=True, | |
| complete_no_clip=False, | |
| color=True | |
| ).to(DEVICE) | |
| print(f"Model loaded on {DEVICE}") | |
| # ======================== | |
| # 核心预测与可视化函数 | |
| # ======================== | |
| def visual_ts(true, preds=None, lookback_len_visual=300, pred_len=96): | |
| """ | |
| 可视化真实值 vs 预测值 | |
| true: [T, nvars] | |
| preds: [T, nvars],与 true 对齐 | |
| """ | |
| if isinstance(true, torch.Tensor): | |
| true = true.cpu().numpy() | |
| if isinstance(preds, torch.Tensor): | |
| preds = preds.cpu().numpy() | |
| nvars = true.shape[1] | |
| FIG_WIDTH = 12 | |
| FIG_HEIGHT_PER_VAR = 1.8 | |
| FONT_S = 10 | |
| fig, axes = plt.subplots( | |
| nrows=nvars, ncols=1, figsize=(FIG_WIDTH, nvars * FIG_HEIGHT_PER_VAR), sharex=True, | |
| gridspec_kw={'height_ratios': [1] * nvars} | |
| ) | |
| if nvars == 1: | |
| axes = [axes] | |
| lookback_len = true.shape[0] - pred_len | |
| for i, ax in enumerate(axes): | |
| ax.plot(true[:, i], label='Ground Truth', color='gray', linewidth=1.8) | |
| if preds is not None: | |
| ax.plot(np.arange(lookback_len, len(true)), preds[lookback_len:, i], | |
| label='Prediction (Median)', color='blue', linewidth=1.8) | |
| # 分隔线 | |
| y_min, y_max = ax.get_ylim() | |
| ax.vlines(x=lookback_len, ymin=y_min, ymax=y_max, | |
| colors='gray', linestyles='--', alpha=0.7, linewidth=1) | |
| ax.set_yticks([]) | |
| ax.set_xticks([]) | |
| ax.text(0.005, 0.8, f'Var {i+1}', transform=ax.transAxes, fontsize=FONT_S, weight='bold') | |
| # 图例 | |
| if preds is not None: | |
| handles, labels = axes[0].get_legend_handles_labels() | |
| fig.legend(handles, labels, loc='upper right', bbox_to_anchor=(0.9, 0.9), prop={'size': FONT_S}) | |
| # 计算 MSE/MAE | |
| if preds is not None: | |
| true_eval = true[-pred_len:] | |
| pred_eval = preds[-pred_len:] | |
| mse = np.mean((true_eval - pred_eval) ** 2) | |
| mae = np.mean(np.abs(true_eval - pred_eval)) | |
| fig.suptitle(f'MSE: {mse:.4f}, MAE: {mae:.4f}', fontsize=12, y=0.95) | |
| plt.subplots_adjust(hspace=0) | |
| return fig # 返回 matplotlib figure | |
| def predict_and_visualize(df, context_len=960, pred_len=394, freq="15Min"): | |
| """ | |
| 输入: df (pandas.DataFrame),必须包含 'date' 列和其他数值列 | |
| 输出: matplotlib 图像 | |
| """ | |
| if 'date' in df.columns: | |
| df['date'] = pd.to_datetime(df['date']) | |
| df = df.set_index('date') | |
| else: | |
| # 如果没有 date 列,假设是纯数值序列 | |
| df = df.copy() | |
| data = df.values # [T, nvars] | |
| nvars = data.shape[1] | |
| if data.shape[0] < context_len + pred_len: | |
| raise ValueError(f"数据太短,至少需要 {context_len + pred_len} 行,当前只有 {data.shape[0]} 行。") | |
| # 归一化(使用训练集前 70% 的统计量) | |
| train_len = int(len(data) * 0.7) | |
| x_mean = data[:train_len].mean(axis=0, keepdims=True) | |
| x_std = data[:train_len].std(axis=0, keepdims=True) + 1e-8 | |
| data_norm = (data - x_mean) / x_std | |
| # 取最后一段作为测试窗口 | |
| end_idx = len(data_norm) | |
| start_idx = end_idx - (context_len + pred_len) | |
| x = data_norm[start_idx:start_idx + context_len] # [context_len, nvars] | |
| y_true = data_norm[start_idx + context_len:end_idx] # [pred_len, nvars] | |
| # 设置周期性 | |
| periodicity_list = freq_to_seasonality_list(freq) | |
| periodicity = periodicity_list[0] if periodicity_list else 1 | |
| color_list = [i % 3 for i in range(nvars)] # RGB 循环着色 | |
| # 更新模型配置 | |
| model.update_config( | |
| context_len=context_len, | |
| pred_len=pred_len, | |
| periodicity=periodicity, | |
| num_patch_input=7, | |
| padding_mode='constant' | |
| ) | |
| # 转为 tensor | |
| x_tensor = torch.FloatTensor(x).unsqueeze(0).to(DEVICE) # [1, T, N] | |
| y_true_tensor = torch.FloatTensor(y_true).unsqueeze(0).to(DEVICE) | |
| # 预测 | |
| with torch.no_grad(): | |
| y_pred, _, _, _, _ = model.forward(x_tensor, export_image=True, color_list=color_list) | |
| y_pred_median = y_pred[0] # median prediction | |
| # 反归一化 | |
| y_true_original = y_true * x_std + x_mean | |
| y_pred_original = y_pred_median[0].cpu().numpy() * x_std + x_mean | |
| # 构造完整序列用于可视化 | |
| full_true = np.concatenate([x * x_std + x_mean, y_true_original], axis=0) | |
| full_pred = np.concatenate([x * x_std + x_mean, y_pred_original], axis=0) | |
| # 可视化 | |
| fig = visual_ts(true=full_true, preds=full_pred, lookback_len_visual=context_len, pred_len=pred_len) | |
| return fig | |
| # ======================== | |
| # 默认数据加载 | |
| # ======================== | |
| def load_default_data(): | |
| data_path = "./datasets/ETTm1.csv" | |
| if not os.path.exists(data_path): | |
| os.makedirs("./datasets", exist_ok=True) | |
| url = "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTm1.csv" | |
| df = pd.read_csv(url) | |
| df.to_csv(data_path, index=False) | |
| else: | |
| df = pd.read_csv(data_path) | |
| return df | |
| # ======================== | |
| # Gradio 界面 | |
| # ======================== | |
| def run_forecast(file_input, context_len, pred_len, freq): | |
| if file_input is not None: | |
| df = pd.read_csv(file_input.name) | |
| title = "Uploaded Data Prediction" | |
| else: | |
| df = load_default_data() | |
| title = "Default ETTm1 Dataset Prediction" | |
| try: | |
| fig = predict_and_visualize(df, context_len=int(context_len), pred_len=int(pred_len), freq=freq) | |
| fig.suptitle(title, fontsize=14, y=0.98) | |
| plt.close(fig) # 防止重复显示 | |
| return fig | |
| except Exception as e: | |
| # 返回错误信息图像 | |
| fig, ax = plt.subplots() | |
| ax.text(0.5, 0.5, f"Error: {str(e)}", ha='center', va='center', wrap=True) | |
| ax.axis('off') | |
| plt.close(fig) | |
| return fig | |
| # Gradio UI | |
| with gr.Blocks(title="VisionTS++ 时间序列预测") as demo: | |
| gr.Markdown("# 🕰️ VisionTS++ 时间序列预测平台") | |
| gr.Markdown("上传你的多变量时间序列 CSV 文件,或使用默认 ETTm1 数据进行预测。") | |
| with gr.Row(): | |
| file_input = gr.File(label="上传 CSV 文件(含 date 列或纯数值)", file_types=['.csv']) | |
| with gr.Column(): | |
| context_len = gr.Number(label="历史长度 (context_len)", value=960) | |
| pred_len = gr.Number(label="预测长度 (pred_len)", value=394) | |
| freq = gr.Textbox(label="时间频率 (如 15Min, H)", value="15Min") | |
| btn = gr.Button("🚀 开始预测") | |
| output_plot = gr.Plot(label="预测结果") | |
| btn.click( | |
| fn=run_forecast, | |
| inputs=[file_input, context_len, pred_len, freq], | |
| outputs=output_plot | |
| ) | |
| # 示例:使用默认数据 | |
| gr.Examples( | |
| examples=[ | |
| [None, 960, 394, "15Min"] | |
| ], | |
| inputs=[file_input, context_len, pred_len, freq], | |
| outputs=output_plot, | |
| fn=run_forecast, | |
| label="点击运行默认示例" | |
| ) | |
| # 启动 | |
| if __name__ == "__main__": | |
| demo.launch() | |