Spaces:
Sleeping
Sleeping
File size: 21,357 Bytes
1aee8e8 34b9253 92593b8 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 595752f 6bd1e51 fe109d5 6bd1e51 1aee8e8 6bd1e51 595752f 1aee8e8 595752f 1aee8e8 6bd1e51 1aee8e8 6bd1e51 1aee8e8 fe109d5 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 6bd1e51 595752f 1aee8e8 34b9253 1aee8e8 34b9253 1aee8e8 bbd3488 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
"""
LocaleNLP Translation Service
============================
A multi-language translation application supporting English, Wolof, Hausa, and Darija.
Features text, audio, and document translation with automatic chaining for all language pairs.
Author: LocaleNLP
"""
import os
import re
import logging
import tempfile
from typing import Optional, Dict, Tuple, Any, Union
from pathlib import Path
from dataclasses import dataclass
from enum import Enum
import gradio as gr
import torch
import whisper
import fitz # PyMuPDF
import docx
from bs4 import BeautifulSoup
from markdown import markdown
import chardet
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
from huggingface_hub import login
# ================================
# Configuration & Constants
# ================================
class Language(str, Enum):
"""Supported languages for translation."""
ENGLISH = "English"
WOLOF = "Wolof"
HAUSA = "Hausa"
DARIJA = "Darija"
class InputMode(str, Enum):
"""Supported input modes."""
TEXT = "Text"
AUDIO = "Audio"
FILE = "File"
@dataclass
class ModelConfig:
"""Configuration for translation models."""
model_name: str
language_tag: str
# Language pair configurations
TRANSLATION_MODELS: Dict[Tuple[Language, Language], ModelConfig] = {
(Language.ENGLISH, Language.WOLOF): ModelConfig(
"LocaleNLP/localenlp-eng-wol-0.03", ">>wol<<"
),
(Language.WOLOF, Language.ENGLISH): ModelConfig(
"LocaleNLP/localenlp-wol-eng-0.03", ">>eng<<"
),
(Language.ENGLISH, Language.HAUSA): ModelConfig(
"LocaleNLP/localenlp-eng-hau-0.01", ">>hau<<"
),
(Language.HAUSA, Language.ENGLISH): ModelConfig(
"LocaleNLP/localenlp-hau-eng-0.01", ">>eng<<"
),
(Language.ENGLISH, Language.DARIJA): ModelConfig(
"LocaleNLP/english_darija", ">>dar<<"
)
}
# File type support
SUPPORTED_FILE_TYPES = [
".pdf", ".docx", ".html", ".htm", ".md",
".srt", ".txt", ".text"
]
# Audio file extensions
AUDIO_EXTENSIONS = [".wav", ".mp3", ".m4a"]
# ================================
# Logging Configuration
# ================================
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# ================================
# Model Management
# ================================
class ModelManager:
"""Centralized model management for translation and transcription."""
def __init__(self):
self._translation_pipeline = None
self._whisper_model = None
self._current_model_name = None
def get_translation_pipeline(
self,
source_lang: Language,
target_lang: Language
) -> Tuple[Any, str]:
"""
Load and return translation pipeline for given language pair.
Args:
source_lang: Source language
target_lang: Target language
Returns:
Tuple of (pipeline, language_tag)
Raises:
ValueError: If language pair is not supported
"""
key = (source_lang, target_lang)
if key not in TRANSLATION_MODELS:
raise ValueError(f"Unsupported translation pair: {source_lang} -> {target_lang}")
config = TRANSLATION_MODELS[key]
# Load model if not loaded or different model needed
if (self._translation_pipeline is None or
self._current_model_name != config.model_name):
logger.info(f"Loading translation model: {config.model_name}")
# Authenticate with Hugging Face if token provided
if hf_token := os.getenv("hffff"):
login(token=hf_token)
model = AutoModelForSeq2SeqLM.from_pretrained(
config.model_name,
token=hf_token
).to(self._get_device())
tokenizer = MarianTokenizer.from_pretrained(
config.model_name,
token=hf_token
)
self._translation_pipeline = pipeline(
"translation",
model=model,
tokenizer=tokenizer,
device=0 if self._get_device().type == "cuda" else -1
)
self._current_model_name = config.model_name
return self._translation_pipeline, config.language_tag
def get_whisper_model(self) -> Any:
"""
Load and return Whisper transcription model.
Returns:
Whisper model instance
"""
if self._whisper_model is None:
logger.info("Loading Whisper base model...")
self._whisper_model = whisper.load_model("base")
return self._whisper_model
def _get_device(self) -> torch.device:
"""Get appropriate device for model execution."""
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ================================
# Content Processing
# ================================
class ContentProcessor:
"""Handles extraction and processing of content from various sources."""
@staticmethod
def extract_text_from_file(file_path: Union[str, Path]) -> str:
"""
Extract text content from various file formats.
Args:
file_path: Path to the file
Returns:
Extracted text content
Raises:
ValueError: If file type is unsupported
Exception: If file processing fails
"""
file_path = Path(file_path)
extension = file_path.suffix.lower()
try:
content = file_path.read_bytes()
if extension == ".pdf":
return ContentProcessor._extract_pdf_text(content)
elif extension == ".docx":
return ContentProcessor._extract_docx_text(file_path)
elif extension in (".html", ".htm"):
return ContentProcessor._extract_html_text(content)
elif extension == ".md":
return ContentProcessor._extract_markdown_text(content)
elif extension == ".srt":
return ContentProcessor._extract_srt_text(content)
elif extension in (".txt", ".text"):
return ContentProcessor._extract_plain_text(content)
else:
raise ValueError(f"Unsupported file type: {extension}")
except Exception as e:
logger.error(f"Failed to extract text from {file_path}: {e}")
raise
@staticmethod
def _extract_pdf_text(content: bytes) -> str:
"""Extract text from PDF file."""
with fitz.open(stream=content, filetype="pdf") as doc:
return "\n".join(page.get_text() for page in doc)
@staticmethod
def _extract_docx_text(file_path: Path) -> str:
"""Extract text from DOCX file."""
doc = docx.Document(str(file_path))
return "\n".join(paragraph.text for paragraph in doc.paragraphs)
@staticmethod
def _extract_html_text(content: bytes) -> str:
"""Extract text from HTML file."""
encoding = chardet.detect(content)["encoding"] or "utf-8"
text = content.decode(encoding, errors="ignore")
soup = BeautifulSoup(text, "html.parser")
return soup.get_text()
@staticmethod
def _extract_markdown_text(content: bytes) -> str:
"""Extract text from Markdown file."""
encoding = chardet.detect(content)["encoding"] or "utf-8"
text = content.decode(encoding, errors="ignore")
html = markdown(text)
soup = BeautifulSoup(html, "html.parser")
return soup.get_text()
@staticmethod
def _extract_srt_text(content: bytes) -> str:
"""Extract text from SRT subtitle file."""
encoding = chardet.detect(content)["encoding"] or "utf-8"
text = content.decode(encoding, errors="ignore")
# Remove timestamp lines
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", text)
@staticmethod
def _extract_plain_text(content: bytes) -> str:
"""Extract text from plain text file."""
encoding = chardet.detect(content)["encoding"] or "utf-8"
return content.decode(encoding, errors="ignore")
# ================================
# Translation Service
# ================================
class TranslationService:
"""Core translation service with advanced processing capabilities."""
def __init__(self, model_manager: ModelManager):
self.model_manager = model_manager
def translate(
self,
text: str,
source_lang: Language,
target_lang: Language
) -> str:
"""
Translate text from source to target language with automatic chaining.
Args:
text: Input text to translate
source_lang: Source language
target_lang: Target language
Returns:
Translated text
"""
if not text.strip():
return "No input text to translate."
# Direct translation if model exists
if (source_lang, target_lang) in TRANSLATION_MODELS:
return self._direct_translate(text, source_lang, target_lang)
# Automatic chaining through English
return self._chained_translate(text, source_lang, target_lang)
def _direct_translate(
self,
text: str,
source_lang: Language,
target_lang: Language
) -> str:
"""Perform direct translation using available model."""
pipeline_obj, lang_tag = self.model_manager.get_translation_pipeline(
source_lang, target_lang
)
return self._process_text_with_pipeline(text, pipeline_obj, lang_tag)
def _chained_translate(
self,
text: str,
source_lang: Language,
target_lang: Language
) -> str:
"""
Perform chained translation through English as intermediate language.
Args:
text: Input text to translate
source_lang: Source language
target_lang: Target language
Returns:
Translated text through chaining
"""
# First: source_lang -> English
intermediate_text = self._direct_translate(
text, source_lang, Language.ENGLISH
)
# Second: English -> target_lang
final_text = self._direct_translate(
intermediate_text, Language.ENGLISH, target_lang
)
return final_text
def _process_text_with_pipeline(
self,
text: str,
pipeline_obj: Any,
lang_tag: str
) -> str:
"""Process text using translation pipeline."""
# Process text in paragraphs
paragraphs = text.splitlines()
translated_paragraphs = []
with torch.no_grad():
for paragraph in paragraphs:
if not paragraph.strip():
translated_paragraphs.append("")
continue
# Split into sentences and translate
sentences = [
s.strip() for s in paragraph.split(". ")
if s.strip()
]
# Add language tag to each sentence
formatted_sentences = [
f"{lang_tag} {sentence}"
for sentence in sentences
]
# Perform translation
results = pipeline_obj(
formatted_sentences,
max_length=5000,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=3,
repetition_penalty=1.5,
length_penalty=1.2
)
# Process results
translated_sentences = [
result["translation_text"].capitalize()
for result in results
]
translated_paragraphs.append(". ".join(translated_sentences))
return "\n".join(translated_paragraphs)
# ================================
# Audio Processing
# ================================
class AudioProcessor:
"""Handles audio file transcription using Whisper."""
def __init__(self, model_manager: ModelManager):
self.model_manager = model_manager
def transcribe(self, audio_file_path: str) -> str:
"""
Transcribe audio file to text.
Args:
audio_file_path: Path to audio file
Returns:
Transcribed text
"""
model = self.model_manager.get_whisper_model()
result = model.transcribe(audio_file_path)
return result["text"]
# ================================
# Main Application
# ================================
class TranslationApp:
"""Main application orchestrating all components."""
def __init__(self):
self.model_manager = ModelManager()
self.content_processor = ContentProcessor()
self.translation_service = TranslationService(self.model_manager)
self.audio_processor = AudioProcessor(self.model_manager)
def process_input(
self,
mode: InputMode,
source_lang: Language,
text_input: str,
audio_file: Optional[str],
file_obj: Optional[gr.FileData]
) -> str:
"""
Process input based on selected mode.
Args:
mode: Input mode
source_lang: Source language
text_input: Text input
audio_file: Audio file path
file_obj: Uploaded file object
Returns:
Processed text content
"""
if mode == InputMode.TEXT:
return text_input
elif mode == InputMode.AUDIO:
if source_lang != Language.ENGLISH:
raise ValueError("Audio input must be in English.")
if not audio_file:
raise ValueError("No audio file provided.")
return self.audio_processor.transcribe(audio_file)
elif mode == InputMode.FILE:
if not file_obj:
raise ValueError("No file uploaded.")
return self.content_processor.extract_text_from_file(file_obj.name)
return ""
def create_interface(self) -> gr.Blocks:
"""Create and return the Gradio interface."""
with gr.Blocks(
title="LocaleNLP Translation Service",
theme=gr.themes.Monochrome()
) as interface:
# Header
gr.Markdown("""
# 🌍 LocaleNLP Translation Service
Translate between English, Wolof, Hausa, and Darija with support for text, audio, and documents.
""")
# Input controls
with gr.Row():
input_mode = gr.Radio(
choices=[mode.value for mode in InputMode],
label="Input Type",
value=InputMode.TEXT.value
)
input_lang = gr.Dropdown(
choices=[lang.value for lang in Language],
label="Input Language",
value=Language.ENGLISH.value
)
output_lang = gr.Dropdown(
choices=[lang.value for lang in Language],
label="Output Language",
value=Language.WOLOF.value
)
# Input components
input_text = gr.Textbox(
label="Enter Text",
lines=8,
visible=True,
placeholder="Type or paste your text here..."
)
audio_input = gr.Audio(
label="Upload Audio",
type="filepath",
visible=False
)
file_input = gr.File(
file_types=SUPPORTED_FILE_TYPES,
label="Upload Document",
visible=False
)
# Processing area
extracted_text = gr.Textbox(
label="Extracted / Transcribed Text",
lines=8,
interactive=False
)
translate_btn = gr.Button(
"🔄 Process & Translate",
variant="secondary"
)
output_text = gr.Textbox(
label="Translated Text",
lines=10,
interactive=False
)
# Event handlers
def update_visibility(mode: str) -> Dict[str, Any]:
"""Update component visibility based on input mode."""
return {
input_text: gr.update(visible=(mode == InputMode.TEXT.value)),
audio_input: gr.update(visible=(mode == InputMode.AUDIO.value)),
file_input: gr.update(visible=(mode == InputMode.FILE.value)),
extracted_text: gr.update(value="", visible=True),
output_text: gr.update(value="")
}
def handle_process(
mode: str,
source_lang: str,
text_input: str,
audio_file: Optional[str],
file_obj: Optional[gr.FileData]
) -> Tuple[str, str]:
"""Handle initial input processing."""
try:
processed_text = self.process_input(
InputMode(mode),
Language(source_lang),
text_input,
audio_file,
file_obj
)
return processed_text, ""
except Exception as e:
logger.error(f"Processing error: {e}")
return "", f"❌ Error: {str(e)}"
def handle_translate(
extracted_text: str,
source_lang: str,
target_lang: str
) -> str:
"""Handle translation of processed text."""
if not extracted_text.strip():
return "📝 No text to translate."
try:
return self.translation_service.translate(
extracted_text,
Language(source_lang),
Language(target_lang)
)
except Exception as e:
logger.error(f"Translation error: {e}")
return f"❌ Translation error: {str(e)}"
# Connect events
input_mode.change(
fn=update_visibility,
inputs=input_mode,
outputs=[input_text, audio_input, file_input, extracted_text, output_text]
)
translate_btn.click(
fn=handle_process,
inputs=[input_mode, input_lang, input_text, audio_input, file_input],
outputs=[extracted_text, output_text]
).then(
fn=handle_translate,
inputs=[extracted_text, input_lang, output_lang],
outputs=output_text
)
# Custom CSS for black button (applied after interface creation)
interface.load(lambda: None, None, None, _js="""
() => {
const style = document.createElement('style');
style.textContent = `
.gr-button-secondary {
background-color: #000000 !important;
border-color: #000000 !important;
color: white !important;
}
.gr-button-secondary:hover {
background-color: #333333 !important;
border-color: #333333 !important;
}
`;
document.head.appendChild(style);
}
""")
return interface
# ================================
# Application Entry Point
# ================================
def main():
"""Main application entry point."""
try:
app = TranslationApp()
interface = app.create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=int(os.getenv("PORT", 7860)),
share=False
)
except Exception as e:
logger.critical(f"Failed to start application: {e}")
raise
if __name__ == "__main__":
main() |