Spaces:
Running
Running
File size: 12,946 Bytes
e8b46b5 1055fe1 e8b46b5 1055fe1 e8b46b5 1055fe1 e8b46b5 1055fe1 e8b46b5 1055fe1 e8b46b5 1055fe1 e8b46b5 1055fe1 e8b46b5 1055fe1 e8b46b5 1055fe1 e8b46b5 1055fe1 e8b46b5 1055fe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
#!/usr/bin/env python3
import re
import json
import sys
from docx import Document
from docx.oxml.ns import qn
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
def is_red_font(run):
"""Enhanced red font detection with better color checking"""
col = run.font.color
if col and col.rgb:
r, g, b = col.rgb
if r > 150 and g < 100 and b < 100 and (r-g) > 30 and (r-b) > 30:
return True
rPr = getattr(run._element, "rPr", None)
if rPr is not None:
clr = rPr.find(qn('w:color'))
if clr is not None:
val = clr.get(qn('w:val'))
if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val):
rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16)
if rr > 150 and gg < 100 and bb < 100 and (rr-gg) > 30 and (rr-bb) > 30:
return True
return False
def _prev_para_text(tbl):
"""Get text from previous paragraph before table"""
prev = tbl._tbl.getprevious()
while prev is not None and not prev.tag.endswith("}p"):
prev = prev.getprevious()
if prev is None:
return ""
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
def normalize_text(text):
"""Normalize text for better matching"""
return re.sub(r'\s+', ' ', text.strip())
def fuzzy_match_heading(heading, patterns):
"""Check if heading matches any pattern with fuzzy matching"""
heading_norm = normalize_text(heading.upper())
for pattern in patterns:
if re.search(pattern, heading_norm, re.IGNORECASE):
return True
return False
def get_table_context(tbl):
"""Get comprehensive context information for table"""
heading = normalize_text(_prev_para_text(tbl))
headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()]
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells[0].text.strip()]
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
all_cells = []
for row in tbl.rows:
for cell in row.cells:
text = normalize_text(cell.text)
if text:
all_cells.append(text)
return {
'heading': heading,
'headers': headers,
'col0': col0,
'first_cell': first_cell,
'all_cells': all_cells,
'num_rows': len(tbl.rows),
'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
}
def calculate_schema_match_score(schema_name, spec, context):
"""Calculate match score for a schema against table context"""
score = 0
reasons = []
if context['first_cell'] and context['first_cell'].upper() == schema_name.upper():
score += 100
reasons.append(f"Direct first cell match: '{context['first_cell']}'")
if spec.get("headings"):
for h in spec["headings"]:
if fuzzy_match_heading(context['heading'], [h["text"]]):
score += 50
reasons.append(f"Heading match: '{context['heading']}'")
break
if spec.get("orientation") == "left":
labels = [normalize_text(lbl) for lbl in spec["labels"]]
matches = 0
for lbl in labels:
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context['col0']):
matches += 1
if matches > 0:
score += (matches / len(labels)) * 30
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
elif spec.get("orientation") == "row1":
labels = [normalize_text(lbl) for lbl in spec["labels"]]
matches = 0
for lbl in labels:
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']):
matches += 1
if matches > 0:
score += (matches / len(labels)) * 30
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
if spec.get("columns"):
cols = [normalize_text(col) for col in spec["columns"]]
matches = 0
for col in cols:
if any(col.upper() in h.upper() for h in context['headers']):
matches += 1
if matches == len(cols):
score += 40
reasons.append(f"All column headers match: {cols}")
if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME":
if "OPERATOR DECLARATION" in context['heading'].upper():
score += 80
reasons.append("Operator Declaration context match")
elif any("MANAGER" in cell.upper() for cell in context['all_cells']):
score += 60
reasons.append("Manager found in cells (likely Operator Declaration)")
if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME":
if any("MANAGER" in cell.upper() for cell in context['all_cells']):
score -= 50 # Penalty because auditors shouldn't be managers
reasons.append("Penalty: Manager found (not auditor)")
return score, reasons
def match_table_schema(tbl):
"""Improved table schema matching with scoring system"""
context = get_table_context(tbl)
best_match = None
best_score = 0
for name, spec in TABLE_SCHEMAS.items():
score, reasons = calculate_schema_match_score(name, spec, context)
if score > best_score:
best_score = score
best_match = name
if best_score >= 20:
return best_match
return None
def check_multi_schema_table(tbl):
"""Check if table contains multiple schemas and split appropriately"""
context = get_table_context(tbl)
operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s",
"Australian Company Number", "NHVAS Manual"]
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context['col0'])
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context['col0'])
if has_operator and has_contact:
return ["Operator Information", "Operator contact details"]
return None
def extract_multi_schema_table(tbl, schemas):
"""Extract data from table with multiple schemas"""
result = {}
for schema_name in schemas:
if schema_name not in TABLE_SCHEMAS:
continue
spec = TABLE_SCHEMAS[schema_name]
schema_data = {}
for ri, row in enumerate(tbl.rows):
if ri == 0:
continue
row_label = normalize_text(row.cells[0].text)
belongs_to_schema = False
matched_label = None
for spec_label in spec["labels"]:
spec_norm = normalize_text(spec_label).upper()
row_norm = row_label.upper()
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
belongs_to_schema = True
matched_label = spec_label
break
if not belongs_to_schema:
continue
for ci, cell in enumerate(row.cells):
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if red_txt:
if matched_label not in schema_data:
schema_data[matched_label] = []
if red_txt not in schema_data[matched_label]:
schema_data[matched_label].append(red_txt)
if schema_data:
result[schema_name] = schema_data
return result
def extract_table_data(tbl, schema_name, spec):
"""Extract red text data from table based on schema"""
labels = spec["labels"] + [schema_name]
collected = {lbl: [] for lbl in labels}
seen = {lbl: set() for lbl in labels}
by_col = (spec["orientation"] == "row1")
start_row = 1 if by_col else 0
rows = tbl.rows[start_row:]
for ri, row in enumerate(rows):
for ci, cell in enumerate(row.cells):
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if not red_txt:
continue
if by_col:
if ci < len(spec["labels"]):
lbl = spec["labels"][ci]
else:
lbl = schema_name
else:
raw_label = normalize_text(row.cells[0].text)
lbl = None
for spec_label in spec["labels"]:
if normalize_text(spec_label).upper() == raw_label.upper():
lbl = spec_label
break
if not lbl:
for spec_label in spec["labels"]:
spec_norm = normalize_text(spec_label).upper()
raw_norm = raw_label.upper()
if spec_norm in raw_norm or raw_norm in spec_norm:
lbl = spec_label
break
if not lbl:
lbl = schema_name
if red_txt not in seen[lbl]:
seen[lbl].add(red_txt)
collected[lbl].append(red_txt)
return {k: v for k, v in collected.items() if v}
def extract_red_text(input_doc):
# input_doc: docx.Document object or file path
if isinstance(input_doc, str):
doc = Document(input_doc)
else:
doc = input_doc
out = {}
table_count = 0
for tbl in doc.tables:
table_count += 1
multi_schemas = check_multi_schema_table(tbl)
if multi_schemas:
multi_data = extract_multi_schema_table(tbl, multi_schemas)
for schema_name, schema_data in multi_data.items():
if schema_data:
if schema_name in out:
for k, v in schema_data.items():
if k in out[schema_name]:
out[schema_name][k].extend(v)
else:
out[schema_name][k] = v
else:
out[schema_name] = schema_data
continue
schema = match_table_schema(tbl)
if not schema:
continue
spec = TABLE_SCHEMAS[schema]
data = extract_table_data(tbl, schema, spec)
if data:
if schema in out:
for k, v in data.items():
if k in out[schema]:
out[schema][k].extend(v)
else:
out[schema][k] = v
else:
out[schema] = data
paras = {}
for idx, para in enumerate(doc.paragraphs):
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
if not red_txt:
continue
context = None
for j in range(idx-1, -1, -1):
txt = normalize_text(doc.paragraphs[j].text)
if txt:
all_patterns = HEADING_PATTERNS["main"] + HEADING_PATTERNS["sub"]
if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
context = txt
break
if not context and re.fullmatch(PARAGRAPH_PATTERNS["date_line"], red_txt):
context = "Date"
if not context:
context = "(para)"
paras.setdefault(context, []).append(red_txt)
if paras:
out["paragraphs"] = paras
return out
def extract_red_text_filelike(input_file, output_file):
"""
Accepts:
input_file: file-like object (BytesIO/File) or path
output_file: file-like object (opened for writing text) or path
"""
if hasattr(input_file, "seek"):
input_file.seek(0)
doc = Document(input_file)
result = extract_red_text(doc)
if hasattr(output_file, "write"):
json.dump(result, output_file, indent=2, ensure_ascii=False)
output_file.flush()
else:
with open(output_file, "w", encoding="utf-8") as f:
json.dump(result, f, indent=2, ensure_ascii=False)
return result
if __name__ == "__main__":
# Support both script and app/file-like usage
if len(sys.argv) == 3:
input_docx = sys.argv[1]
output_json = sys.argv[2]
doc = Document(input_docx)
word_data = extract_red_text(doc)
with open(output_json, 'w', encoding='utf-8') as f:
json.dump(word_data, f, indent=2, ensure_ascii=False)
print(json.dumps(word_data, indent=2, ensure_ascii=False))
else:
print("To use as a module: extract_red_text_filelike(input_file, output_file)") |