File size: 12,946 Bytes
e8b46b5
1055fe1
 
 
e8b46b5
 
1055fe1
e8b46b5
1055fe1
 
e8b46b5
 
1055fe1
 
e8b46b5
 
 
 
 
 
1055fe1
 
 
e8b46b5
 
 
1055fe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8b46b5
1055fe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8b46b5
1055fe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8b46b5
1055fe1
 
 
 
 
 
 
e8b46b5
1055fe1
 
 
 
 
 
 
 
 
e8b46b5
 
 
 
1055fe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#!/usr/bin/env python3
import re
import json
import sys
from docx import Document
from docx.oxml.ns import qn
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS

def is_red_font(run):
    """Enhanced red font detection with better color checking"""
    col = run.font.color
    if col and col.rgb:
        r, g, b = col.rgb
        if r > 150 and g < 100 and b < 100 and (r-g) > 30 and (r-b) > 30:
            return True
    rPr = getattr(run._element, "rPr", None)
    if rPr is not None:
        clr = rPr.find(qn('w:color'))
        if clr is not None:
            val = clr.get(qn('w:val'))
            if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val):
                rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16)
                if rr > 150 and gg < 100 and bb < 100 and (rr-gg) > 30 and (rr-bb) > 30:
                    return True
    return False

def _prev_para_text(tbl):
    """Get text from previous paragraph before table"""
    prev = tbl._tbl.getprevious()
    while prev is not None and not prev.tag.endswith("}p"):
        prev = prev.getprevious()
    if prev is None:
        return ""
    return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()

def normalize_text(text):
    """Normalize text for better matching"""
    return re.sub(r'\s+', ' ', text.strip())

def fuzzy_match_heading(heading, patterns):
    """Check if heading matches any pattern with fuzzy matching"""
    heading_norm = normalize_text(heading.upper())
    for pattern in patterns:
        if re.search(pattern, heading_norm, re.IGNORECASE):
            return True
    return False

def get_table_context(tbl):
    """Get comprehensive context information for table"""
    heading = normalize_text(_prev_para_text(tbl))
    headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()]
    col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells[0].text.strip()]
    first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
    all_cells = []
    for row in tbl.rows:
        for cell in row.cells:
            text = normalize_text(cell.text)
            if text:
                all_cells.append(text)
    return {
        'heading': heading,
        'headers': headers,
        'col0': col0,
        'first_cell': first_cell,
        'all_cells': all_cells,
        'num_rows': len(tbl.rows),
        'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
    }

def calculate_schema_match_score(schema_name, spec, context):
    """Calculate match score for a schema against table context"""
    score = 0
    reasons = []
    if context['first_cell'] and context['first_cell'].upper() == schema_name.upper():
        score += 100
        reasons.append(f"Direct first cell match: '{context['first_cell']}'")
    if spec.get("headings"):
        for h in spec["headings"]:
            if fuzzy_match_heading(context['heading'], [h["text"]]):
                score += 50
                reasons.append(f"Heading match: '{context['heading']}'")
                break
    if spec.get("orientation") == "left":
        labels = [normalize_text(lbl) for lbl in spec["labels"]]
        matches = 0
        for lbl in labels:
            if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context['col0']):
                matches += 1
        if matches > 0:
            score += (matches / len(labels)) * 30
            reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
    elif spec.get("orientation") == "row1":
        labels = [normalize_text(lbl) for lbl in spec["labels"]]
        matches = 0
        for lbl in labels:
            if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']):
                matches += 1
        if matches > 0:
            score += (matches / len(labels)) * 30
            reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
    if spec.get("columns"):
        cols = [normalize_text(col) for col in spec["columns"]]
        matches = 0
        for col in cols:
            if any(col.upper() in h.upper() for h in context['headers']):
                matches += 1
        if matches == len(cols):
            score += 40
            reasons.append(f"All column headers match: {cols}")
    if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME":
        if "OPERATOR DECLARATION" in context['heading'].upper():
            score += 80
            reasons.append("Operator Declaration context match")
        elif any("MANAGER" in cell.upper() for cell in context['all_cells']):
            score += 60
            reasons.append("Manager found in cells (likely Operator Declaration)")
    if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME":
        if any("MANAGER" in cell.upper() for cell in context['all_cells']):
            score -= 50  # Penalty because auditors shouldn't be managers
            reasons.append("Penalty: Manager found (not auditor)")
    return score, reasons

def match_table_schema(tbl):
    """Improved table schema matching with scoring system"""
    context = get_table_context(tbl)
    best_match = None
    best_score = 0
    for name, spec in TABLE_SCHEMAS.items():
        score, reasons = calculate_schema_match_score(name, spec, context)
        if score > best_score:
            best_score = score
            best_match = name
    if best_score >= 20:
        return best_match
    return None

def check_multi_schema_table(tbl):
    """Check if table contains multiple schemas and split appropriately"""
    context = get_table_context(tbl)
    operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s", 
                      "Australian Company Number", "NHVAS Manual"]
    contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
    has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context['col0'])
    has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context['col0'])
    if has_operator and has_contact:
        return ["Operator Information", "Operator contact details"]
    return None

def extract_multi_schema_table(tbl, schemas):
    """Extract data from table with multiple schemas"""
    result = {}
    for schema_name in schemas:
        if schema_name not in TABLE_SCHEMAS:
            continue
        spec = TABLE_SCHEMAS[schema_name]
        schema_data = {}
        for ri, row in enumerate(tbl.rows):
            if ri == 0:
                continue
            row_label = normalize_text(row.cells[0].text)
            belongs_to_schema = False
            matched_label = None
            for spec_label in spec["labels"]:
                spec_norm = normalize_text(spec_label).upper()
                row_norm = row_label.upper()
                if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
                    belongs_to_schema = True
                    matched_label = spec_label
                    break
            if not belongs_to_schema:
                continue
            for ci, cell in enumerate(row.cells):
                red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
                if red_txt:
                    if matched_label not in schema_data:
                        schema_data[matched_label] = []
                    if red_txt not in schema_data[matched_label]:
                        schema_data[matched_label].append(red_txt)
        if schema_data:
            result[schema_name] = schema_data
    return result

def extract_table_data(tbl, schema_name, spec):
    """Extract red text data from table based on schema"""
    labels = spec["labels"] + [schema_name]
    collected = {lbl: [] for lbl in labels}
    seen = {lbl: set() for lbl in labels}
    by_col = (spec["orientation"] == "row1")
    start_row = 1 if by_col else 0
    rows = tbl.rows[start_row:]
    for ri, row in enumerate(rows):
        for ci, cell in enumerate(row.cells):
            red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
            if not red_txt:
                continue
            if by_col:
                if ci < len(spec["labels"]):
                    lbl = spec["labels"][ci]
                else:
                    lbl = schema_name
            else:
                raw_label = normalize_text(row.cells[0].text)
                lbl = None
                for spec_label in spec["labels"]:
                    if normalize_text(spec_label).upper() == raw_label.upper():
                        lbl = spec_label
                        break
                if not lbl:
                    for spec_label in spec["labels"]:
                        spec_norm = normalize_text(spec_label).upper()
                        raw_norm = raw_label.upper()
                        if spec_norm in raw_norm or raw_norm in spec_norm:
                            lbl = spec_label
                            break
                if not lbl:
                    lbl = schema_name
            if red_txt not in seen[lbl]:
                seen[lbl].add(red_txt)
                collected[lbl].append(red_txt)
    return {k: v for k, v in collected.items() if v}

def extract_red_text(input_doc):
    # input_doc: docx.Document object or file path
    if isinstance(input_doc, str):
        doc = Document(input_doc)
    else:
        doc = input_doc
    out = {}
    table_count = 0
    for tbl in doc.tables:
        table_count += 1
        multi_schemas = check_multi_schema_table(tbl)
        if multi_schemas:
            multi_data = extract_multi_schema_table(tbl, multi_schemas)
            for schema_name, schema_data in multi_data.items():
                if schema_data:
                    if schema_name in out:
                        for k, v in schema_data.items():
                            if k in out[schema_name]:
                                out[schema_name][k].extend(v)
                            else:
                                out[schema_name][k] = v
                    else:
                        out[schema_name] = schema_data
            continue
        schema = match_table_schema(tbl)
        if not schema:
            continue
        spec = TABLE_SCHEMAS[schema]
        data = extract_table_data(tbl, schema, spec)
        if data:
            if schema in out:
                for k, v in data.items():
                    if k in out[schema]:
                        out[schema][k].extend(v)
                    else:
                        out[schema][k] = v
            else:
                out[schema] = data
    paras = {}
    for idx, para in enumerate(doc.paragraphs):
        red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
        if not red_txt:
            continue
        context = None
        for j in range(idx-1, -1, -1):
            txt = normalize_text(doc.paragraphs[j].text)
            if txt:
                all_patterns = HEADING_PATTERNS["main"] + HEADING_PATTERNS["sub"]
                if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
                    context = txt
                    break
        if not context and re.fullmatch(PARAGRAPH_PATTERNS["date_line"], red_txt):
            context = "Date"
        if not context:
            context = "(para)"
        paras.setdefault(context, []).append(red_txt)
    if paras:
        out["paragraphs"] = paras
    return out

def extract_red_text_filelike(input_file, output_file):
    """
    Accepts:
      input_file: file-like object (BytesIO/File) or path
      output_file: file-like object (opened for writing text) or path
    """
    if hasattr(input_file, "seek"):
        input_file.seek(0)
    doc = Document(input_file)
    result = extract_red_text(doc)
    if hasattr(output_file, "write"):
        json.dump(result, output_file, indent=2, ensure_ascii=False)
        output_file.flush()
    else:
        with open(output_file, "w", encoding="utf-8") as f:
            json.dump(result, f, indent=2, ensure_ascii=False)
    return result

if __name__ == "__main__":
    # Support both script and app/file-like usage
    if len(sys.argv) == 3:
        input_docx = sys.argv[1]
        output_json = sys.argv[2]
        doc = Document(input_docx)
        word_data = extract_red_text(doc)
        with open(output_json, 'w', encoding='utf-8') as f:
            json.dump(word_data, f, indent=2, ensure_ascii=False)
        print(json.dumps(word_data, indent=2, ensure_ascii=False))
    else:
        print("To use as a module: extract_red_text_filelike(input_file, output_file)")