File size: 36,182 Bytes
c421c59
b45d525
ff7f2b3
bf0aa04
b45d525
 
bf0aa04
 
7e7d8ff
bf0aa04
 
b45d525
 
 
 
ff7f2b3
bf0aa04
 
 
 
 
 
 
 
 
 
7e7d8ff
 
 
bf0aa04
 
 
 
 
 
 
 
 
 
862d7cb
bf0aa04
 
 
 
862d7cb
 
 
bf0aa04
 
 
 
862d7cb
bf0aa04
 
 
 
 
 
 
 
 
862d7cb
bf0aa04
 
 
 
 
 
 
862d7cb
bf0aa04
862d7cb
bf0aa04
 
 
862d7cb
bf0aa04
 
 
 
 
 
862d7cb
bf0aa04
 
 
 
 
 
862d7cb
bf0aa04
 
 
 
 
 
862d7cb
bf0aa04
 
 
 
 
 
 
 
862d7cb
bf0aa04
 
 
862d7cb
bf0aa04
 
 
 
 
 
 
 
 
862d7cb
bf0aa04
 
 
 
 
 
 
 
 
862d7cb
bf0aa04
 
 
 
a923317
 
bf0aa04
 
 
7e7d8ff
bf0aa04
 
7e7d8ff
ff7f2b3
 
7e7d8ff
a923317
 
 
bf0aa04
 
 
7e7d8ff
 
a923317
 
 
 
 
 
 
 
7e7d8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
862d7cb
7e7d8ff
 
 
 
 
 
 
 
862d7cb
7e7d8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
a923317
bf0aa04
7e7d8ff
 
 
 
 
 
 
 
bf0aa04
7e7d8ff
 
a923317
bf0aa04
b45d525
 
bf0aa04
 
 
 
 
 
2f39e2e
a923317
7e7d8ff
862d7cb
 
 
 
7e7d8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
862d7cb
 
 
7e7d8ff
862d7cb
 
 
 
 
 
 
 
da9c442
7e7d8ff
862d7cb
7e7d8ff
 
 
 
 
 
 
 
 
 
 
 
862d7cb
7e7d8ff
862d7cb
 
 
 
7e7d8ff
862d7cb
 
 
 
b45d525
a923317
862d7cb
 
 
 
7e7d8ff
862d7cb
 
 
7e7d8ff
862d7cb
 
 
 
 
 
 
 
 
7e7d8ff
862d7cb
 
7e7d8ff
862d7cb
 
7e7d8ff
862d7cb
 
7e7d8ff
862d7cb
 
 
 
 
 
 
 
 
 
 
7e7d8ff
862d7cb
7e7d8ff
862d7cb
 
7e7d8ff
862d7cb
 
 
 
 
7e7d8ff
862d7cb
 
 
7e7d8ff
862d7cb
 
7e7d8ff
862d7cb
 
7e7d8ff
 
 
 
 
 
862d7cb
 
 
 
 
7e7d8ff
862d7cb
 
 
 
 
7e7d8ff
 
 
 
 
 
 
 
 
 
 
 
862d7cb
 
b45d525
a923317
862d7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b45d525
862d7cb
7e7d8ff
b45d525
862d7cb
 
 
 
 
 
 
 
7e7d8ff
 
862d7cb
7e7d8ff
 
862d7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b45d525
e35f4e1
862d7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b45d525
862d7cb
7e7d8ff
862d7cb
 
 
 
 
 
b45d525
862d7cb
 
b45d525
862d7cb
 
bf0aa04
862d7cb
 
 
 
 
 
 
 
 
 
 
 
bf0aa04
862d7cb
beadd24
862d7cb
 
 
 
 
 
beadd24
862d7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b45d525
 
862d7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e7d8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
import os
import logging
import cv2
import numpy as np
from PIL import Image
from datetime import datetime
import gradio as gr
import spaces
import torch

from huggingface_hub import HfApi, HfFolder
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS

# =============== LOGGING SETUP ===============
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# =============== CONFIGURATION ===============
UPLOADS_DIR = "uploads"
if not os.path.exists(UPLOADS_DIR):
    os.makedirs(UPLOADS_DIR)
    logging.info(f"Created uploads directory: {UPLOADS_DIR}")

HF_TOKEN = os.getenv("HF_TOKEN")
YOLO_MODEL_PATH = "best.pt"
SEG_MODEL_PATH = "segmentation_model.h5"
GUIDELINE_PDFS = ["eHealth in Wound Care.pdf", "IWGDF Guideline.pdf", "evaluation.pdf"]
DATASET_ID = "SmartHeal/wound-image-uploads"
MAX_NEW_TOKENS = 2048
PIXELS_PER_CM = 38

# =============== GLOBAL CACHES ===============
models_cache = {}
knowledge_base_cache = {}

# =============== LAZY LOADING FUNCTIONS (CPU-SAFE) ===============
def load_yolo_model(yolo_model_path):
    """Lazy import and load YOLO model to avoid CUDA initialization."""
    from ultralytics import YOLO
    return YOLO(yolo_model_path)

def load_segmentation_model(seg_model_path):
    """Lazy import and load segmentation model."""
    import tensorflow as tf
    tf.config.set_visible_devices([], 'GPU')  # Force CPU for TensorFlow
    from tensorflow.keras.models import load_model
    return load_model(seg_model_path, compile=False)

def load_classification_pipeline(hf_token):
    """Lazy import and load classification pipeline (CPU only)."""
    from transformers import pipeline
    return pipeline(
        "image-classification",
        model="Hemg/Wound-classification",
        token=hf_token,
        device="cpu"
    )

def load_embedding_model():
    """Load embedding model for knowledge base."""
    return HuggingFaceEmbeddings(
        model_name="sentence-transformers/all-MiniLM-L6-v2",
        model_kwargs={"device": "cpu"}
    )

# =============== MODEL INITIALIZATION ===============
def initialize_cpu_models():
    """Initialize all CPU-only models once."""
    global models_cache
    
    if HF_TOKEN:
        HfFolder.save_token(HF_TOKEN)
        logging.info("βœ… HuggingFace token set")
    
    if "det" not in models_cache:
        try:
            models_cache["det"] = load_yolo_model(YOLO_MODEL_PATH)
            logging.info("βœ… YOLO model loaded (CPU only)")
        except Exception as e:
            logging.error(f"YOLO load failed: {e}")

    if "seg" not in models_cache:
        try:
            models_cache["seg"] = load_segmentation_model(SEG_MODEL_PATH)
            logging.info("βœ… Segmentation model loaded (CPU)")
        except Exception as e:
            logging.warning(f"Segmentation model not available: {e}")

    if "cls" not in models_cache:
        try:
            models_cache["cls"] = load_classification_pipeline(HF_TOKEN)
            logging.info("βœ… Classification pipeline loaded (CPU)")
        except Exception as e:
            logging.warning(f"Classification pipeline not available: {e}")

    if "embedding_model" not in models_cache:
        try:
            models_cache["embedding_model"] = load_embedding_model()
            logging.info("βœ… Embedding model loaded (CPU)")
        except Exception as e:
            logging.warning(f"Embedding model not available: {e}")

def setup_knowledge_base():
    """Load PDF documents and create FAISS vector store."""
    global knowledge_base_cache
    if "vector_store" in knowledge_base_cache:
        return

    docs = []
    for pdf_path in GUIDELINE_PDFS:
        if os.path.exists(pdf_path):
            try:
                loader = PyPDFLoader(pdf_path)
                docs.extend(loader.load())
                logging.info(f"Loaded PDF: {pdf_path}")
            except Exception as e:
                logging.warning(f"Failed to load PDF {pdf_path}: {e}")

    if docs and "embedding_model" in models_cache:
        splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
        chunks = splitter.split_documents(docs)
        knowledge_base_cache["vector_store"] = FAISS.from_documents(chunks, models_cache["embedding_model"])
        logging.info(f"βœ… Knowledge base ready with {len(chunks)} chunks")
    else:
        knowledge_base_cache["vector_store"] = None
        logging.warning("Knowledge base unavailable")

# Initialize models on app startup
initialize_cpu_models()
setup_knowledge_base()

# =============== GPU-DECORATED MEDGEMMA FUNCTION ===============
@spaces.GPU(enable_queue=True, duration=120)
def generate_medgemma_report(
    patient_info,
    visual_results,
    guideline_context,
    image_pil,
    max_new_tokens=None,
):
    """GPU-only function for MedGemma report generation - EXACTLY like working reference."""
    from transformers import pipeline

    # Lazy-load MedGemma pipeline on GPU - EXACTLY like working reference
    if not hasattr(generate_medgemma_report, "_pipe"):
        try:
            generate_medgemma_report._pipe = pipeline(
                "image-text-to-text",
                model="google/medgemma-4b-it",
                torch_dtype=torch.bfloat16,
                device_map="auto",
                token=HF_TOKEN
            )
            logging.info("βœ… MedGemma pipeline loaded on GPU")
        except Exception as e:
            logging.warning(f"MedGemma pipeline load failed: {e}")
            return None

    pipe = generate_medgemma_report._pipe

    # Use the EXACT prompt format from the working reference
    prompt = f"""
🩺 You are SmartHeal-AI Agent, a world-class wound care AI specialist trained in clinical wound assessment and guideline-based treatment planning.
Your task is to process the following structured inputs (patient data, wound measurements, clinical guidelines, and image) and perform **clinical reasoning and decision-making** to generate a complete wound care report.
---
πŸ” **YOUR PROCESS β€” FOLLOW STRICTLY:**
### Step 1: Clinical Reasoning (Chain-of-Thought)
Use the provided information to think step-by-step about:
- Patient's risk factors (e.g. diabetes, age, healing limitations)
- Wound characteristics (size, tissue appearance, moisture, infection signs)
- Visual clues from the image (location, granulation, maceration, inflammation, surrounding skin)
- Clinical guidelines provided β€” selectively choose the ones most relevant to this case
Do NOT list all guidelines verbatim. Use judgment: apply them where relevant. Explain why or why not.
Also assess whether this wound appears:
- Acute vs chronic
- Surgical vs traumatic
- Inflammatory vs proliferative healing phase
---
### Step 2: Structured Clinical Report
Generate the following report sections using markdown and medical terminology:
#### **1. Clinical Summary**
- Describe wound appearance and tissue types (e.g., slough, necrotic, granulating, epithelializing)
- Include size, wound bed condition, peri-wound skin, and signs of infection or biofilm
- Mention inferred location (e.g., heel, forefoot) if image allows
- Summarize patient's systemic risk profile
#### **2. Medicinal & Dressing Recommendations**
Based on your analysis:
- Recommend specific **wound care dressings** (e.g., hydrocolloid, alginate, foam, antimicrobial silver, etc.) suitable to wound moisture level and infection risk
- Propose **topical or systemic agents** ONLY if relevant β€” include name classes (e.g., antiseptic: povidone iodine, antibiotic ointments, enzymatic debriders)
- Mention **techniques** (e.g., sharp debridement, NPWT, moisture balance, pressure offloading, dressing frequency)
- Avoid repeating guidelines β€” **apply them**
#### **3. Key Risk Factors**
Explain how the patient's condition (e.g., diabetic, poor circulation, advanced age, poor hygiene) may affect wound healing
#### **4. Prognosis & Monitoring Advice**
- Mention how often wound should be reassessed
- Indicate signs to monitor for deterioration or improvement
- Include when escalation to specialist is necessary
#### **5. Disclaimer**
This is an AI-generated summary based on available data. It is not a substitute for clinical evaluation by a wound care professional.
**Note:** Every dressing change is a chance for wound reassessment. Always perform a thorough wound evaluation at each dressing change.
---
🧾 **INPUT DATA**
**Patient Info:**  
{patient_info}
**Wound Details:**  
- Type: {visual_results['wound_type']}  
- Size: {visual_results['length_cm']} Γ— {visual_results['breadth_cm']} cm  
- Area: {visual_results['surface_area_cm2']} cmΒ²
**Clinical Guideline Evidence:**  
{guideline_context}
You may now begin your analysis and generate the two-part report.
"""

    # Use EXACT message format from working reference
    messages = [
        {
            "role": "system",
            "content": [{"type": "text", "text": "You are a world-class medical AI assistant. Follow the user's instructions precisely to perform a two-step analysis and generate a structured report."}],
        },
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image_pil},
                {"type": "text", "text": prompt},
            ]
        }
    ]

    try:
        output = pipe(
            text=messages,
            max_new_tokens=max_new_tokens or MAX_NEW_TOKENS,
            do_sample=False,
        )
        result = output[0]["generated_text"][-1].get("content", "").strip()
        return result if result else "⚠️ No content generated. Try reducing max tokens or input size."

    except Exception as e:
        logging.error(f"Failed to generate MedGemma report: {e}", exc_info=True)
        return f"❌ An error occurred while generating the report: {e}"

# =============== AI PROCESSOR CLASS ===============
class AIProcessor:
    def __init__(self):
        self.models_cache = models_cache
        self.knowledge_base_cache = knowledge_base_cache
        self.px_per_cm = PIXELS_PER_CM
        self.uploads_dir = UPLOADS_DIR
        self.dataset_id = DATASET_ID
        self.hf_token = HF_TOKEN

    def perform_visual_analysis(self, image_pil: Image.Image) -> dict:
        """Performs the full visual analysis pipeline - EXACTLY like working reference."""
        try:
            # Convert PIL to OpenCV format
            image_cv = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
            
            # YOLO Detection - EXACTLY like working reference
            results = self.models_cache["det"].predict(image_cv, verbose=False, device="cpu")
            if not results or not results[0].boxes: 
                raise ValueError("No wound could be detected.")
                
            box = results[0].boxes[0].xyxy[0].cpu().numpy().astype(int)
            detected_region_cv = image_cv[box[1]:box[3], box[0]:box[2]]
            
            # Segmentation - EXACTLY like working reference
            input_size = self.models_cache["seg"].input_shape[1:3]
            resized = cv2.resize(detected_region_cv, (input_size[1], input_size[0]))
            mask_pred = self.models_cache["seg"].predict(np.expand_dims(resized / 255.0, 0), verbose=0)[0]
            mask_np = (mask_pred[:, :, 0] > 0.5).astype(np.uint8)
            
            # Calculate measurements - EXACTLY like working reference
            contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
            length, breadth, area = (0, 0, 0)
            if contours:
                cnt = max(contours, key=cv2.contourArea)
                x, y, w, h = cv2.boundingRect(cnt)
                length, breadth, area = round(h / self.px_per_cm, 2), round(w / self.px_per_cm, 2), round(cv2.contourArea(cnt) / (self.px_per_cm ** 2), 2)

            # Classification - EXACTLY like working reference
            detected_image_pil = Image.fromarray(cv2.cvtColor(detected_region_cv, cv2.COLOR_BGR2RGB))
            wound_type = max(self.models_cache["cls"](detected_image_pil), key=lambda x: x["score"])["label"]

            # Save detection visualization
            det_vis = image_cv.copy()
            cv2.rectangle(det_vis, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
            os.makedirs(f"{self.uploads_dir}/analysis", exist_ok=True)
            ts = datetime.now().strftime("%Y%m%d_%H%M%S")
            det_path = f"{self.uploads_dir}/analysis/detection_{ts}.png"
            cv2.imwrite(det_path, det_vis)
            
            # Save original image for reference
            original_path = f"{self.uploads_dir}/analysis/original_{ts}.png"
            cv2.imwrite(original_path, image_cv)

            # Save segmentation visualization if available
            seg_path = None
            if contours:
                mask_resized = cv2.resize(mask_np * 255, (detected_region_cv.shape[1], detected_region_cv.shape[0]), interpolation=cv2.INTER_NEAREST)
                overlay = detected_region_cv.copy()
                overlay[mask_resized > 127] = [0, 0, 255]  # Red overlay for wound area
                seg_vis = cv2.addWeighted(detected_region_cv, 0.7, overlay, 0.3, 0)
                seg_path = f"{self.uploads_dir}/analysis/segmentation_{ts}.png"
                cv2.imwrite(seg_path, seg_vis)

            visual_results = {
                "wound_type": wound_type, 
                "length_cm": length, 
                "breadth_cm": breadth, 
                "surface_area_cm2": area,
                "detection_confidence": float(results[0].boxes.conf[0].cpu().item()) if results[0].boxes.conf is not None else 0.0,
                "detection_image_path": det_path,
                "segmentation_image_path": seg_path,
                "original_image_path": original_path
            }
            return visual_results

        except Exception as e:
            logging.error(f"Visual analysis failed: {e}")
            raise e

    def query_guidelines(self, query: str) -> str:
        """Query the knowledge base for relevant information."""
        try:
            vector_store = self.knowledge_base_cache.get("vector_store")
            if not vector_store:
                return "Knowledge base is not available."
            
            retriever = vector_store.as_retriever(search_kwargs={"k": 10})
            docs = retriever.invoke(query)
            return "\n\n".join([f"Source: {doc.metadata.get('source', 'N/A')}, Page: {doc.metadata.get('page', 'N/A')}\nContent: {doc.page_content}" for doc in docs])
            
        except Exception as e:
            logging.error(f"Guidelines query failed: {e}")
            return f"Guidelines query failed: {str(e)}"

    def generate_final_report(
        self, patient_info: str, visual_results: dict, guideline_context: str, 
        image_pil: Image.Image, max_new_tokens: int = None
    ) -> str:
        """Generate final report using MedGemma GPU pipeline - EXACTLY like working reference."""
        try:
            report = generate_medgemma_report(
                patient_info, visual_results, guideline_context, image_pil, max_new_tokens
            )
            
            if report and report.strip() and not report.startswith("❌") and not report.startswith("⚠️"):
                return report
            else:
                logging.warning("MedGemma returned empty or error response, using fallback")
                return self._generate_fallback_report(patient_info, visual_results, guideline_context)
                
        except Exception as e:
            logging.error(f"MedGemma report generation failed: {e}")
            return self._generate_fallback_report(patient_info, visual_results, guideline_context)

    def _generate_fallback_report(
        self, patient_info: str, visual_results: dict, guideline_context: str
    ) -> str:
        """Generate fallback report if MedGemma fails."""
        
        report = f"""# 🩺 SmartHeal AI - Wound Analysis Report

## πŸ“‹ Patient Information
{patient_info}

## πŸ” Visual Analysis Results
- **Wound Type**: {visual_results.get('wound_type', 'Unknown')}
- **Dimensions**: {visual_results.get('length_cm', 0)} cm Γ— {visual_results.get('breadth_cm', 0)} cm  
- **Surface Area**: {visual_results.get('surface_area_cm2', 0)} cmΒ²
- **Detection Confidence**: {visual_results.get('detection_confidence', 0):.2f}

## πŸ“Š Analysis Images
- **Detection Image**: {visual_results.get('detection_image_path', 'N/A')}
- **Segmentation Image**: {visual_results.get('segmentation_image_path', 'N/A')}

## πŸ“š Clinical Guidelines Context
{guideline_context[:1000]}{'...' if len(guideline_context) > 1000 else ''}

## 🎯 Assessment Summary
Based on the automated visual analysis, the wound has been classified as **{visual_results.get('wound_type', 'Unknown')}** with measurable dimensions. The detection confidence indicates the reliability of the automated assessment.

### Clinical Observations
- **Wound Classification**: {visual_results.get('wound_type', 'Unspecified')}
- **Approximate Size**: {visual_results.get('length_cm', 0)} Γ— {visual_results.get('breadth_cm', 0)} cm
- **Calculated Area**: {visual_results.get('surface_area_cm2', 0)} cmΒ²

## πŸ’Š General Recommendations
1. **Clinical Evaluation**: This automated analysis should be supplemented with professional clinical assessment
2. **Documentation**: Regular monitoring and documentation of wound progression is recommended
3. **Treatment Planning**: Develop appropriate treatment protocol based on wound characteristics and patient factors
4. **Follow-up**: Schedule appropriate follow-up intervals based on wound severity and healing progress

## ⚠️ Important Clinical Notes
- This is an automated analysis and should not replace professional medical judgment
- All measurements are estimates based on computer vision algorithms
- Clinical correlation is essential for proper diagnosis and treatment planning
- Consider patient-specific factors not captured in this automated assessment

## πŸ₯ Next Steps
1. **Professional Assessment**: Consult with a qualified wound care specialist
2. **Comprehensive Evaluation**: Consider patient's overall health status and comorbidities
3. **Treatment Protocol**: Develop individualized care plan based on clinical findings
4. **Monitoring Plan**: Establish regular assessment schedule

## βš–οΈ Disclaimer
This automated analysis is provided for informational purposes only and does not constitute medical advice. Always consult with qualified healthcare professionals for proper diagnosis and treatment. This AI-generated report should be used as a supplementary tool alongside professional clinical assessment.

---
*Generated by SmartHeal AI - Advanced Wound Care Analysis System*
*Report Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}*
"""
        return report

    def save_and_commit_image(self, image_pil: Image.Image) -> str:
        """Save image locally and optionally commit to HF dataset."""
        try:
            os.makedirs(self.uploads_dir, exist_ok=True)
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = f"{timestamp}.png"
            path = os.path.join(self.uploads_dir, filename)
            
            # Save image
            image_pil.convert("RGB").save(path)
            logging.info(f"βœ… Image saved locally: {path}")
            
            # Upload to HuggingFace dataset if configured
            if self.hf_token and self.dataset_id:
                try:
                    api = HfApi()
                    api.upload_file(
                        path_or_fileobj=path,
                        path_in_repo=f"images/{filename}",
                        repo_id=self.dataset_id,
                        repo_type="dataset",
                        token=self.hf_token,
                        commit_message=f"Upload wound image: {filename}"
                    )
                    logging.info("βœ… Image committed to HF dataset")
                except Exception as e:
                    logging.warning(f"HF upload failed: {e}")
            
            return path
            
        except Exception as e:
            logging.error(f"Failed to save image: {e}")
            return ""

    def full_analysis_pipeline(self, image_pil: Image.Image, questionnaire_data: dict) -> dict:
        """Run full analysis pipeline - EXACTLY like working reference."""
        try:
            # Save image first
            saved_path = self.save_and_commit_image(image_pil)
            logging.info(f"Image saved: {saved_path}")
            
            # Perform visual analysis
            visual_results = self.perform_visual_analysis(image_pil)
            logging.info(f"Visual analysis completed: {visual_results}")
            
            # Process questionnaire data - EXACTLY like working reference
            patient_info = f"Age: {questionnaire_data.get('age', 'N/A')}, Diabetic: {questionnaire_data.get('diabetic', 'N/A')}, Allergies: {questionnaire_data.get('allergies', 'N/A')}, Date of Wound Sustained: {questionnaire_data.get('date_of_injury', 'N/A')}, Professional Care: {questionnaire_data.get('professional_care', 'N/A')}, Oozing/Bleeding: {questionnaire_data.get('oozing_bleeding', 'N/A')}, Infection: {questionnaire_data.get('infection', 'N/A')}, Moisture: {questionnaire_data.get('moisture', 'N/A')}"
            
            # Query guidelines - EXACTLY like working reference
            query = f"best practices for managing a {visual_results['wound_type']} with moisture level '{questionnaire_data.get('moisture', 'unknown')}' and signs of infection '{questionnaire_data.get('infection', 'unknown')}' in a patient who is diabetic '{questionnaire_data.get('diabetic', 'unknown')}'"
            guideline_context = self.query_guidelines(query)
            logging.info("Guidelines queried successfully")
            
            # Generate final report
            report = self.generate_final_report(patient_info, visual_results, guideline_context, image_pil)
            logging.info("Report generated successfully")
            
            return {
                'success': True, 
                'visual_analysis': visual_results, 
                'report': report, 
                'saved_image_path': saved_path,
                'guideline_context': guideline_context[:500] + "..." if len(guideline_context) > 500 else guideline_context
            }
            
        except Exception as e:
            logging.error(f"Pipeline error: {e}")
            return {
                'success': False, 
                'error': str(e),
                'visual_analysis': {},
                'report': f"Analysis failed: {str(e)}",
                'saved_image_path': None,
                'guideline_context': ""
            }

    def analyze_wound(self, image, questionnaire_data: dict) -> dict:
        """Main analysis entry point - maintains original function name."""
        try:
            # Handle different image input formats
            if isinstance(image, str):
                if os.path.exists(image):
                    image_pil = Image.open(image)
                else:
                    raise ValueError(f"Image file not found: {image}")
            elif isinstance(image, Image.Image):
                image_pil = image
            elif isinstance(image, np.ndarray):
                image_pil = Image.fromarray(image)
            else:
                raise ValueError(f"Unsupported image type: {type(image)}")
            
            return self.full_analysis_pipeline(image_pil, questionnaire_data)
            
        except Exception as e:
            logging.error(f"Wound analysis error: {e}")
            return {
                'success': False, 
                'error': str(e),
                'visual_analysis': {},
                'report': f"Analysis initialization failed: {str(e)}",
                'saved_image_path': None,
                'guideline_context': ""
            }

    def _assess_risk_legacy(self, questionnaire_data: dict) -> dict:
        """Legacy risk assessment function - maintains original function name."""
        risk_factors = []
        risk_score = 0
        
        try:
            # Age assessment
            age = questionnaire_data.get('age', 0)
            if isinstance(age, str):
                try:
                    age = int(age)
                except ValueError:
                    age = 0
                    
            if age > 65:
                risk_factors.append("Advanced age (>65)")
                risk_score += 2
            elif age > 50:
                risk_factors.append("Older adult (50-65)")
                risk_score += 1
            
            # Wound duration assessment
            duration = str(questionnaire_data.get('wound_duration', '')).lower()
            if any(term in duration for term in ['month', 'months', 'year', 'years']):
                risk_factors.append("Chronic wound (>4 weeks)")
                risk_score += 3
            elif any(term in duration for term in ['week', 'weeks']):
                # Try to extract number of weeks
                import re
                weeks_match = re.search(r'(\d+)\s*week', duration)
                if weeks_match and int(weeks_match.group(1)) > 4:
                    risk_factors.append("Chronic wound (>4 weeks)")
                    risk_score += 3
            
            # Pain level assessment
            pain = questionnaire_data.get('pain_level', 0)
            if isinstance(pain, str):
                try:
                    pain = float(pain)
                except ValueError:
                    pain = 0
                    
            if pain >= 7:
                risk_factors.append("High pain level (β‰₯7/10)")
                risk_score += 2
            elif pain >= 5:
                risk_factors.append("Moderate pain level (5-6/10)")
                risk_score += 1
            
            # Medical history assessment
            medical_history = str(questionnaire_data.get('medical_history', '')).lower()
            diabetic_status = str(questionnaire_data.get('diabetic', '')).lower()
            
            if 'diabetes' in medical_history or 'yes' in diabetic_status:
                risk_factors.append("Diabetes mellitus")
                risk_score += 3
            
            if any(term in medical_history for term in ['vascular', 'circulation', 'arterial', 'venous']):
                risk_factors.append("Vascular disease")
                risk_score += 2
                
            if any(term in medical_history for term in ['immune', 'immunocompromised', 'steroid', 'chemotherapy']):
                risk_factors.append("Immune system compromise")
                risk_score += 2
                
            if any(term in medical_history for term in ['smoking', 'smoker', 'tobacco']):
                risk_factors.append("Smoking history")
                risk_score += 2
            
            # Infection signs
            infection_signs = str(questionnaire_data.get('infection', '')).lower()
            if 'yes' in infection_signs:
                risk_factors.append("Signs of infection present")
                risk_score += 3
            
            # Moisture level
            moisture = str(questionnaire_data.get('moisture', '')).lower()
            if any(term in moisture for term in ['wet', 'heavy', 'excessive']):
                risk_factors.append("Excessive wound exudate")
                risk_score += 1
            
            # Determine risk level
            if risk_score >= 8:
                risk_level = "Very High"
            elif risk_score >= 6:
                risk_level = "High"
            elif risk_score >= 3:
                risk_level = "Moderate"
            else:
                risk_level = "Low"
                
            return {
                'risk_score': risk_score, 
                'risk_level': risk_level, 
                'risk_factors': risk_factors,
                'recommendations': self._get_risk_recommendations(risk_level, risk_factors)
            }
            
        except Exception as e:
            logging.error(f"Risk assessment error: {e}")
            return {
                'risk_score': 0, 
                'risk_level': 'Unknown', 
                'risk_factors': [],
                'recommendations': ["Unable to assess risk due to data processing error"]
            }
    
    def _get_risk_recommendations(self, risk_level: str, risk_factors: list) -> list:
        """Generate risk-based recommendations."""
        recommendations = []
        
        if risk_level in ["High", "Very High"]:
            recommendations.append("Urgent referral to wound care specialist recommended")
            recommendations.append("Consider daily wound monitoring")
            recommendations.append("Implement aggressive wound care protocol")
        elif risk_level == "Moderate":
            recommendations.append("Regular wound care follow-up every 2-3 days")
            recommendations.append("Monitor for signs of deterioration")
        else:
            recommendations.append("Standard wound care monitoring")
            recommendations.append("Weekly assessment recommended")
        
        # Specific recommendations based on risk factors
        if "Diabetes mellitus" in risk_factors:
            recommendations.append("Strict glycemic control essential")
            recommendations.append("Monitor for diabetic complications")
        
        if "Signs of infection present" in risk_factors:
            recommendations.append("Consider antibiotic therapy")
            recommendations.append("Increase wound cleaning frequency")
        
        if "Excessive wound exudate" in risk_factors:
            recommendations.append("Use high-absorption dressings")
            recommendations.append("More frequent dressing changes may be needed")
        
        return recommendations


# =============== STANDALONE SAVE AND COMMIT FUNCTION ===============
def save_and_commit_image(image_to_save):
    """Saves an image locally and commits it to the separate HF Dataset repository - EXACTLY like working reference."""
    if not image_to_save:
        return

    timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    filename = f"{timestamp}.png"
    local_save_path = os.path.join(UPLOADS_DIR, filename)
    
    image_to_save.convert("RGB").save(local_save_path)
    logging.info(f"βœ… Image saved to temporary local storage: {local_save_path}")

    if DATASET_ID and HF_TOKEN:
        try:
            api = HfApi()
            repo_path = f"images/{filename}"
            
            logging.info(f"Attempting to commit {local_save_path} to DATASET {DATASET_ID}...")
            
            api.upload_file(
                path_or_fileobj=local_save_path,
                path_in_repo=repo_path,
                repo_id=DATASET_ID,
                repo_type="dataset",
                commit_message=f"Upload wound image: {filename}"
            )
            logging.info(f"βœ… Image successfully committed to dataset.")
        except Exception as e:
            logging.error(f"❌ FAILED TO COMMIT IMAGE TO DATASET: {e}")
    else:
        logging.warning("DATASET_ID or HF_TOKEN not set. Skipping file commit.")

# =============== MAIN ANALYSIS FUNCTION (with @spaces.GPU) - EXACTLY LIKE WORKING REFERENCE ===============
@spaces.GPU(enable_queue=True, duration=120)
def analyze(image, age, diabetic, allergies, date_of_injury, professional_care, oozing_bleeding, infection, moisture):
    """Main analysis function with GPU decorator - EXACTLY like working reference."""
    try:
        yield None, None, "⏳ Initializing... Loading AI models..."
        
        # Load all models - using global cache
        if "medgemma_pipe" not in models_cache:
            from transformers import pipeline
            models_cache["medgemma_pipe"] = pipeline(
                "image-text-to-text",
                model="google/medgemma-4b-it",
                torch_dtype=torch.bfloat16,
                device_map="auto",
                token=HF_TOKEN
            )
            logging.info("βœ… All models loaded.")
        
        yield None, None, "⏳ Setting up knowledge base from guidelines..."
        
        # Save image
        save_and_commit_image(image)
        
        # Create processor instance
        processor = AIProcessor()
        
        yield None, None, "⏳ Performing visual analysis..."
        
        # Perform visual analysis - EXACTLY like working reference
        image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        results = models_cache["det"].predict(image_cv, verbose=False, device="cpu")
        if not results or not results[0].boxes: 
            raise ValueError("No wound could be detected.")
        
        box = results[0].boxes[0].xyxy[0].cpu().numpy().astype(int)
        detected_region_cv = image_cv[box[1]:box[3], box[0]:box[2]]
        
        input_size = models_cache["seg"].input_shape[1:3]
        resized = cv2.resize(detected_region_cv, (input_size[1], input_size[0]))
        mask_pred = models_cache["seg"].predict(np.expand_dims(resized / 255.0, 0), verbose=0)[0]
        mask_np = (mask_pred[:, :, 0] > 0.5).astype(np.uint8)
        
        contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        length, breadth, area = (0, 0, 0)
        if contours:
            cnt = max(contours, key=cv2.contourArea)
            x, y, w, h = cv2.boundingRect(cnt)
            length, breadth, area = round(h / PIXELS_PER_CM, 2), round(w / PIXELS_PER_CM, 2), round(cv2.contourArea(cnt) / (PIXELS_PER_CM ** 2), 2)

        detected_image_pil = Image.fromarray(cv2.cvtColor(detected_region_cv, cv2.COLOR_BGR2RGB))
        wound_type = max(models_cache["cls"](detected_image_pil), key=lambda x: x["score"])["label"]

        visual_results = {"wound_type": wound_type, "length_cm": length, "breadth_cm": breadth, "surface_area_cm2": area}
        
        # Create visualization images
        segmented_mask = Image.fromarray(cv2.resize(mask_np * 255, (detected_region_cv.shape[1], detected_region_cv.shape[0]), interpolation=cv2.INTER_NEAREST))
        
        yield detected_image_pil, segmented_mask, f"βœ… Visual analysis complete. Detected: {visual_results['wound_type']}. Querying guidelines..."
        
        # Query guidelines
        patient_info = f"Age: {age}, Diabetic: {diabetic}, Allergies: {allergies}, Date of Wound Sustained: {date_of_injury}, Professional Care: {professional_care}, Oozing/Bleeding: {oozing_bleeding}, Infection: {infection}, Moisture: {moisture}"
        query = f"best practices for managing a {visual_results['wound_type']} with moisture level '{moisture}' and signs of infection '{infection}' in a patient who is diabetic '{diabetic}'"
        guideline_context = processor.query_guidelines(query)
        
        yield detected_image_pil, segmented_mask, "βœ… Guidelines queried. Generating final report..."
        
        # Generate final report using MedGemma
        final_report = generate_medgemma_report(
            patient_info, 
            visual_results, 
            guideline_context, 
            image_pil=image
        )

        visual_summary = f"""## πŸ“Š Programmatic Visual Analysis
| Metric | Result |
| :--- | :--- |
| **Detected Wound Type** | {visual_results['wound_type']} |
| **Estimated Dimensions** | {visual_results['length_cm']}cm x {visual_results['breadth_cm']}cm (Area: {visual_results['surface_area_cm2']}cmΒ²) |
---
"""
        final_output_text = visual_summary + "## 🩺 MedHeal-AI Clinical Assessment\n" + final_report
        yield detected_image_pil, segmented_mask, final_output_text

    except Exception as e:
        logging.error(f"An error occurred during analysis: {e}", exc_info=True)
        yield None, None, f"❌ **An error occurred:** {e}"