File size: 8,787 Bytes
cc1bad4 3392a2f cc1bad4 8deac30 56588b0 9e72422 b98996a d7205d9 06d6d0a cc1bad4 782ddf5 cc1bad4 0afe578 91186c1 cc1bad4 0afe578 91186c1 cc1bad4 195c5f1 91186c1 cc1bad4 4cf7ea6 cc1bad4 4cf7ea6 7b3cbf2 4cf7ea6 782ddf5 4cf7ea6 7b3cbf2 f0797fe 4cf7ea6 f5cd731 4cf7ea6 f0797fe 4cf7ea6 e3b77c6 4cf7ea6 eb68364 4cf7ea6 eb68364 4cf7ea6 cc1bad4 4cf7ea6 597e146 651d68e 9c860eb a840685 98a0325 9c860eb a840685 933f493 a840685 4cf7ea6 f3b99f7 d4253a5 9a62502 d4253a5 9a62502 80f55a4 9a62502 230f3ee 4cf7ea6 cc1bad4 0b400c4 cc1bad4 2ac0b62 3f9039f f807785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import time
import streamlit as st
# from transformers import pipeline
import os
import torch
import datetime
import numpy as np
import soundfile
from wavmark.utils import file_reader
from audioseal import AudioSeal
import torchaudio
from pydub import AudioSegment
import io
import librosa
import ffmpeg
def create_default_value():
if "def_value" not in st.session_state:
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
def_val_str = "".join([str(i) for i in def_val_npy])
st.session_state.def_value = def_val_str
def download_sample_audio():
url = "https://keithito.com/LJ-Speech-Dataset/LJ037-0171.wav"
with open("test.wav", "wb") as f:
resp = urllib.request.urlopen(url)
f.write(resp.read())
wav, sample_rate = torchaudio.load("test.wav")
return wav, sample_rate
# Main web app
def main():
create_default_value()
# st.title("MDS07 Demo Presentation")
# st.write("https://github.com/ravindi-r/audioseal")
markdown_text = """
# MDS07 Demo Presentation
[AudioSeal](https://github.com/ravindi-r/audioseal) is the next-generation watermarking tool driven by AI.
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
This page is for demonstration usage.
If you have longer files for processing, we recommend using [our python toolkit](https://github.com/ravindi-r/audioseal).
"""
# 使用st.markdown渲染Markdown文本
st.markdown(markdown_text)
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
try:
if audio_file:
#2nd attempt
# Save file to local storage
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
#st.markdown(file_extension)
if file_extension in [".wav", ".flac"]:
with open("test.wav", "wb") as f:
f.write(audio_file.getbuffer())
st.audio("test.wav", format="audio/wav")
elif file_extension == ".mp3":
with open("test.mp3", "wb") as f:
f.write(audio_file.getbuffer())
st.audio("test.mp3", format="audio/mpeg")
#Load the WAV file using torchaudio
if file_extension in [".wav", ".flac"]:
wav, sample_rate = torchaudio.load("test.wav")
# st.markdown("Before unsquueze wav")
# st.markdown(wav)
file_extension_ori =".wav"
#Unsqueeze for line 176
wav= wav.unsqueeze(0)
elif file_extension == ".mp3":
# Load an MP3 file
audio = AudioSegment.from_mp3("test.mp3")
# Export it as a WAV file
audio.export("test.wav", format="wav")
wav3, sample_rate = torchaudio.load("test.wav")
wav= wav3.unsqueeze(0)
file_extension_ori =".mp3"
file_extension =".wav"
action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])
if action == "Add Watermark":
#watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
if add_watermark_button: # 点击按钮后执行的
#if audio_file and watermark_text:
if audio_file:
with st.spinner("Adding Watermark..."):
#wav = my_read_file(wav,max_second_encode)
#1st attempt
watermark = model.get_watermark(wav, default_sr)
watermarked_audio = wav + watermark
print(watermarked_audio.size())
size = watermarked_audio.size()
#st.markdown(size)
print(watermarked_audio.squeeze())
squeeze = watermarked_audio.squeeze(1)
shape = squeeze.size()
#st.markdown(shape)
#st.markdown(squeeze)
if file_extension_ori in [".wav", ".flac"]:
torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
st.audio("output.wav", format="audio/wav")
with open("output.wav", "rb") as file:
#file.read()
#file.write(watermarked_wav.getbuffer())
binary_data = file.read()
btn = st.download_button(
label="Download watermarked audio",
data=binary_data,
file_name="output.wav",
mime="audio/wav",
)
elif file_extension_ori == ".mp3":
torchaudio.save("output.wav", squeeze, default_sr)
watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr)
audio = AudioSegment.from_wav("output.wav")
# Export as MP3
audio.export("output.mp3", format="mp3")
st.audio("output.mp3", format="audio/mpeg")
with open("output.mp3", "rb") as file:
#file.write(watermarked_wav.getbuffer())
binary_data = file.read()
st.download_button(
label="Download watermarked audio",
data=binary_data,
file_name="output.mp3",
mime="audio/mpeg",
)
elif action == "Detect Watermark":
detect_watermark_button = st.button("Detect Watermark", key="detect_watermark_btn")
if detect_watermark_button:
with st.spinner("Detecting..."):
# result, message = detector.detect_watermark(watermarked_audio, sample_rate=default_sr, message_threshold=0.5)
# st.markdown("Probability of audio being watermarked: ")
# st.markdown(result)
# st.markdown("This is likely a watermarked audio!")
# print(f"\nThis is likely a watermarked audio: {result}")
#Run on an unwatermarked audio
if file_extension in [".wav", ".flac"]:
wav, sample_rate = torchaudio.load("test.wav")
wav= wav.unsqueeze(0)
elif file_extension == ".mp3":
# Load an MP3 file
audio = AudioSegment.from_mp3("test.mp3")
# Export it as a WAV file
audio.export("test.wav", format="wav")
wav, sample_rate = torchaudio.load("test.wav")
wav= wav.unsqueeze(0)
result2, message2 = detector.detect_watermark(wav, sample_rate=default_sr, message_threshold=0.5)
print(f"This is likely an unwatermarked audio: {result2}")
st.markdown("Probability of audio being watermarked: ")
st.markdown(result2)
if result2 < 0.5:
st.markdown("This is likely an unwatermarked audio!")
else:
st.markdown("This is likely an watermarked audio!")
except RuntimeError:
st.error("Please input audio with one channel (mono-channel)")
if __name__ == "__main__":
default_sr = 16000
max_second_encode = 60
max_second_decode = 30
len_start_bit = 16
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# model = wavmark.load_model().to(device)
model = AudioSeal.load_generator("audioseal_wm_16bits")
detector = AudioSeal.load_detector(("audioseal_detector_16bits"))
main() |