File size: 8,787 Bytes
cc1bad4
 
3392a2f
cc1bad4
 
 
 
 
 
8deac30
56588b0
9e72422
b98996a
d7205d9
06d6d0a
 
cc1bad4
 
 
 
 
 
782ddf5
 
 
 
 
 
 
 
 
cc1bad4
 
 
 
0afe578
91186c1
cc1bad4
0afe578
91186c1
cc1bad4
 
195c5f1
91186c1
cc1bad4
 
 
 
 
 
4cf7ea6
 
 
 
 
 
 
 
 
 
cc1bad4
4cf7ea6
7b3cbf2
4cf7ea6
 
 
782ddf5
4cf7ea6
7b3cbf2
f0797fe
4cf7ea6
 
f5cd731
 
4cf7ea6
f0797fe
4cf7ea6
e3b77c6
4cf7ea6
 
 
eb68364
 
4cf7ea6
 
 
 
 
eb68364
4cf7ea6
cc1bad4
4cf7ea6
 
 
 
 
 
 
597e146
651d68e
 
9c860eb
 
 
 
a840685
98a0325
9c860eb
 
 
a840685
933f493
a840685
4cf7ea6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3b99f7
d4253a5
 
 
 
9a62502
 
 
 
 
 
 
 
d4253a5
 
 
 
 
 
 
 
 
 
 
9a62502
 
 
 
 
80f55a4
 
 
 
9a62502
230f3ee
4cf7ea6
cc1bad4
 
 
0b400c4
 
 
 
 
cc1bad4
2ac0b62
3f9039f
f807785
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import time
import streamlit as st
# from transformers import pipeline
import os
import torch
import datetime
import numpy as np
import soundfile
from wavmark.utils import file_reader
from audioseal import AudioSeal
import torchaudio
from pydub import AudioSegment
import io
import librosa
import ffmpeg

def create_default_value():
    if "def_value" not in st.session_state:
        def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
        def_val_str = "".join([str(i) for i in def_val_npy])
        st.session_state.def_value = def_val_str

def download_sample_audio():
    url = "https://keithito.com/LJ-Speech-Dataset/LJ037-0171.wav"
    with open("test.wav", "wb") as f:
        resp = urllib.request.urlopen(url)
        f.write(resp.read())
    
    wav, sample_rate = torchaudio.load("test.wav")
    return wav, sample_rate

# Main web app
def main():
    create_default_value()

    # st.title("MDS07 Demo Presentation")
    # st.write("https://github.com/ravindi-r/audioseal")
    markdown_text = """
    # MDS07 Demo Presentation
    [AudioSeal](https://github.com/ravindi-r/audioseal) is the next-generation watermarking tool driven by AI. 
    You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
    
    This page is for demonstration usage. 
    If you have longer files for processing, we recommend using [our python toolkit](https://github.com/ravindi-r/audioseal).
    """

    # 使用st.markdown渲染Markdown文本
    st.markdown(markdown_text)

    audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
    try:
        if audio_file:
            #2nd attempt
            # Save file to local storage
            tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
            file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
            #st.markdown(file_extension)
            if file_extension in [".wav", ".flac"]:
                with open("test.wav", "wb") as f:
                    f.write(audio_file.getbuffer())

                st.audio("test.wav", format="audio/wav")

            elif file_extension == ".mp3":
                with open("test.mp3", "wb") as f:
                    f.write(audio_file.getbuffer())

                st.audio("test.mp3", format="audio/mpeg")

        #Load the WAV file using torchaudio
            if file_extension in [".wav", ".flac"]: 
                wav, sample_rate = torchaudio.load("test.wav")
            # st.markdown("Before unsquueze wav")
            # st.markdown(wav)
                file_extension_ori =".wav"
            #Unsqueeze for line 176
                wav= wav.unsqueeze(0)
                
            elif file_extension == ".mp3":
                # Load an MP3 file
                audio = AudioSegment.from_mp3("test.mp3")

            # Export it as a WAV file
                audio.export("test.wav", format="wav")
                wav3, sample_rate = torchaudio.load("test.wav")
                wav= wav3.unsqueeze(0)
                file_extension_ori =".mp3"
                file_extension =".wav"

            action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])

            if action == "Add Watermark":
                #watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
                add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
                if add_watermark_button:  # 点击按钮后执行的
                    #if audio_file and watermark_text:
                    if audio_file:
                        with st.spinner("Adding Watermark..."):
                        #wav = my_read_file(wav,max_second_encode)
                        
                        #1st attempt
                            watermark = model.get_watermark(wav, default_sr)
                            watermarked_audio = wav + watermark
                            print(watermarked_audio.size())
                            size = watermarked_audio.size()
                        #st.markdown(size)

                            print(watermarked_audio.squeeze())
                            squeeze = watermarked_audio.squeeze(1)
                            shape = squeeze.size()
                        #st.markdown(shape)

                        #st.markdown(squeeze)
                        if file_extension_ori in [".wav", ".flac"]:
                            torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
                            watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)

                            st.audio("output.wav", format="audio/wav")

                            with open("output.wav", "rb") as file:
                                #file.read()
                                #file.write(watermarked_wav.getbuffer())
                                binary_data = file.read()
                                btn = st.download_button(
                                    label="Download watermarked audio",
                                    data=binary_data,
                                    file_name="output.wav",
                                    mime="audio/wav",
                                )


                        elif file_extension_ori == ".mp3":
                            torchaudio.save("output.wav", squeeze, default_sr)
                            watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr)
                            audio = AudioSegment.from_wav("output.wav")

                            # Export as MP3
                            audio.export("output.mp3", format="mp3")
                            st.audio("output.mp3", format="audio/mpeg")
                        
                            with open("output.mp3", "rb") as file:
                                #file.write(watermarked_wav.getbuffer())
                                binary_data = file.read()
                                st.download_button(
                                    label="Download watermarked audio",
                                    data=binary_data,
                                    file_name="output.mp3",
                                    mime="audio/mpeg",
                                )
            elif action == "Detect Watermark":
                detect_watermark_button = st.button("Detect Watermark", key="detect_watermark_btn")                               
                if detect_watermark_button:
                    with st.spinner("Detecting..."):
                    # result, message = detector.detect_watermark(watermarked_audio, sample_rate=default_sr, message_threshold=0.5)
                    # st.markdown("Probability of audio being watermarked: ")
                    # st.markdown(result)
                    # st.markdown("This is likely a watermarked audio!")
                    # print(f"\nThis is likely a watermarked audio: {result}")

                    #Run on an unwatermarked audio

                        if file_extension in [".wav", ".flac"]: 
                            wav, sample_rate = torchaudio.load("test.wav")
                            wav= wav.unsqueeze(0)

                        elif file_extension == ".mp3":
                            # Load an MP3 file
                            audio = AudioSegment.from_mp3("test.mp3")
                            # Export it as a WAV file
                            audio.export("test.wav", format="wav")
                            wav, sample_rate = torchaudio.load("test.wav")
                            wav= wav.unsqueeze(0)
                        
                    result2, message2 = detector.detect_watermark(wav, sample_rate=default_sr, message_threshold=0.5)
                    print(f"This is likely an unwatermarked audio: {result2}")
                    st.markdown("Probability of audio being watermarked: ")
                    st.markdown(result2)
                    if result2 < 0.5:
                        st.markdown("This is likely an unwatermarked audio!")
                    else:
                        st.markdown("This is likely an watermarked audio!")

    except RuntimeError:
        st.error("Please input audio with one channel (mono-channel)")


if __name__ == "__main__":
    default_sr = 16000
    max_second_encode = 60
    max_second_decode = 30
    len_start_bit = 16
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    # model = wavmark.load_model().to(device)
    model = AudioSeal.load_generator("audioseal_wm_16bits")
    detector = AudioSeal.load_detector(("audioseal_detector_16bits"))
    main()