File size: 10,599 Bytes
9fcad90
f5c99ab
18359c8
b5023f2
6b1cbcf
b5023f2
6b1cbcf
 
 
f5c99ab
5137a03
6b1cbcf
5137a03
3dce029
5137a03
8434eb9
3dce029
 
 
f5c99ab
8434eb9
f5c99ab
 
3dce029
9fcad90
 
5137a03
 
6b1cbcf
8434eb9
 
 
9a0d6a9
8434eb9
9fcad90
6b1cbcf
9fcad90
6b1cbcf
9fcad90
 
3772b14
6b1cbcf
9fcad90
6b1cbcf
 
9fcad90
6b1cbcf
9fcad90
 
 
6b1cbcf
9fcad90
 
 
 
 
 
 
 
 
 
 
 
 
6b1cbcf
478560e
 
 
 
 
6b1cbcf
478560e
 
 
9fcad90
6b1cbcf
3dce029
5137a03
3dce029
 
 
6b1cbcf
 
478560e
9a0d6a9
6b1cbcf
 
8434eb9
9a0d6a9
3dce029
9a0d6a9
 
f5c99ab
9a0d6a9
f5c99ab
 
3dce029
 
 
f5c99ab
8434eb9
6b1cbcf
f5c99ab
 
6b1cbcf
9fcad90
9a0d6a9
6b1cbcf
 
 
 
 
 
 
f5c99ab
8434eb9
 
f5c99ab
8434eb9
 
f5c99ab
6b1cbcf
f5c99ab
3772b14
 
 
6b1cbcf
3772b14
 
 
 
6b1cbcf
3772b14
3dce029
 
8434eb9
3dce029
 
 
 
6b1cbcf
18359c8
3dce029
6b1cbcf
3dce029
9fcad90
 
3dce029
6b1cbcf
 
 
 
 
 
3dce029
f5c99ab
 
 
6b1cbcf
3dce029
f5c99ab
3dce029
f5c99ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8434eb9
 
 
 
f5c99ab
 
 
 
9fcad90
f5c99ab
 
 
 
 
8434eb9
f5c99ab
9a0d6a9
f5c99ab
 
 
 
6b1cbcf
f5c99ab
3dce029
 
 
6b1cbcf
9fcad90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# managers/seedvr_manager.py
#
# Copyright (C) 2025 Carlos Rodrigues dos Santos
#
# Version: 2.3.3
#
# This version adds a monkey patch to disable torch.distributed.barrier calls
# within the SeedVR library, allowing it to run in a single-GPU inference mode
# without raising a "process group not initialized" error.

import torch
import torch.distributed as dist
import os
import gc
import logging
import sys
import subprocess
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file
import gradio as gr
import mediapy
from einops import rearrange

from tools.tensor_utils import wavelet_reconstruction

logger = logging.getLogger(__name__)

# --- Dependency Management ---
DEPS_DIR = Path("./deps")
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR"
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git"
VAE_CONFIG_URL = "https://raw.githubusercontent.com/ByteDance-Seed/SeedVR/main/models/video_vae_v3/s8_c16_t4_inflation_sd3.yaml"

def setup_seedvr_dependencies():
    """Ensures the SeedVR repository is cloned and available in the sys.path."""
    if not SEEDVR_REPO_DIR.exists():
        logger.info(f"SeedVR repository not found at '{SEEDVR_REPO_DIR}'. Cloning from GitHub...")
        try:
            DEPS_DIR.mkdir(exist_ok=True)
            subprocess.run(["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)], check=True, capture_output=True, text=True)
            logger.info("SeedVR repository cloned successfully.")
        except subprocess.CalledProcessError as e:
            logger.error(f"Failed to clone SeedVR repository. Git stderr: {e.stderr}")
            raise RuntimeError("Could not clone the required SeedVR dependency from GitHub.")
    else:
        logger.info("Found local SeedVR repository.")
    
    if str(SEEDVR_REPO_DIR.resolve()) not in sys.path:
        sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve()))
        logger.info(f"Added '{SEEDVR_REPO_DIR.resolve()}' to sys.path.")

setup_seedvr_dependencies()

from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.seed import set_seed
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
from omegaconf import OmegaConf


def _load_file_from_url(url, model_dir='./', file_name=None):
    os.makedirs(model_dir, exist_ok=True)
    filename = file_name or os.path.basename(urlparse(url).path)
    cached_file = os.path.abspath(os.path.join(model_dir, filename))
    if not os.path.exists(cached_file):
        logger.info(f'Downloading: "{url}" to {cached_file}')
        download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
    return cached_file

class SeedVrManager:
    """Manages the SeedVR model for HD Mastering tasks."""
    def __init__(self, workspace_dir="deformes_workspace"):
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.runner = None
        self.workspace_dir = workspace_dir
        self.is_initialized = False
        self._original_barrier = None # To store the original distributed barrier function
        logger.info("SeedVrManager initialized. Model will be loaded on demand.")

    def _download_models_and_configs(self):
        """Downloads the necessary checkpoints AND the missing VAE config file."""
        logger.info("Verifying and downloading SeedVR2 models and configs...")
        ckpt_dir = SEEDVR_REPO_DIR / 'ckpts'
        config_dir = SEEDVR_REPO_DIR / 'configs' / 'vae'
        ckpt_dir.mkdir(exist_ok=True)
        config_dir.mkdir(parents=True, exist_ok=True)
        _load_file_from_url(url=VAE_CONFIG_URL, model_dir=str(config_dir))
        pretrain_model_urls = {
            'vae_ckpt': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
            'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
            'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth',
            'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
            'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt'
        }
        for key, url in pretrain_model_urls.items():
            _load_file_from_url(url=url, model_dir=str(ckpt_dir))
        logger.info("SeedVR2 models and configs downloaded successfully.")

    def _initialize_runner(self, model_version: str):
        """Loads and configures the SeedVR model, with patches for single-GPU inference."""
        if self.runner is not None: return
        self._download_models_and_configs()

        if dist.is_available() and not dist.is_initialized():
            logger.info("Applying patch to disable torch.distributed.barrier for single-GPU inference.")
            self._original_barrier = dist.barrier
            dist.barrier = lambda *args, **kwargs: None
        
        logger.info(f"Initializing SeedVR2 {model_version} runner...")
        if model_version == '3B':
            config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml'
            checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_3b.pth'
        elif model_version == '7B':
            config_path = SEEDVR_REPO_DIR / 'configs_7b' / 'main.yaml'
            checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_7b.pth'
        else:
            raise ValueError(f"Unsupported SeedVR model version: {model_version}")

        try:
            config = load_config(str(config_path))
        except FileNotFoundError:
            logger.warning("Caught expected FileNotFoundError. Loading config manually.")
            config = OmegaConf.load(str(config_path))
            correct_vae_config_path = SEEDVR_REPO_DIR / 'configs' / 'vae' / 's8_c16_t4_inflation_sd3.yaml'
            vae_config = OmegaConf.load(str(correct_vae_config_path))
            config.vae = vae_config
            logger.info("Configuration loaded and patched manually.")

        self.runner = VideoDiffusionInfer(config)
        OmegaConf.set_readonly(self.runner.config, False)
        self.runner.configure_dit_model(device=self.device, checkpoint=str(checkpoint_path))
        self.runner.configure_vae_model()
        if hasattr(self.runner.vae, "set_memory_limit"):
            self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit)
        self.is_initialized = True
        logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.")
    
    def _unload_runner(self):
        """Unloads the runner from VRAM and restores any applied patches."""
        if self.runner is not None:
            del self.runner; self.runner = None
            gc.collect(); torch.cuda.empty_cache()
            self.is_initialized = False
            logger.info("SeedVR runner unloaded from VRAM.")
        
        if self._original_barrier is not None:
            logger.info("Restoring original torch.distributed.barrier function.")
            dist.barrier = self._original_barrier
            self._original_barrier = None

    def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
                      model_version: str = '3B', steps: int = 50, seed: int = 666, 
                      progress: gr.Progress = None) -> str:
        """Applies HD enhancement to a video using the SeedVR logic."""
        try:
            self._initialize_runner(model_version)
            set_seed(seed, same_across_ranks=True)
            self.runner.config.diffusion.timesteps.sampling.steps = steps
            self.runner.configure_diffusion()
            video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0
            res_h, res_w = video_tensor.shape[-2:]
            video_transform = Compose([
                NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
                Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
                DivisibleCrop((16, 16)),
                Normalize(0.5, 0.5),
                Rearrange("t c h w -> c t h w"),
            ])
            cond_latents = [video_transform(video_tensor.to(self.device))]
            input_videos = cond_latents
            self.runner.dit.to("cpu")
            self.runner.vae.to(self.device)
            cond_latents = self.runner.vae_encode(cond_latents)
            self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache()
            self.runner.dit.to(self.device)
            pos_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'pos_emb.pt'
            neg_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'neg_emb.pt'
            text_pos_embeds = torch.load(pos_emb_path).to(self.device)
            text_neg_embeds = torch.load(neg_emb_path).to(self.device)
            text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
            noises = [torch.randn_like(latent) for latent in cond_latents]
            conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]
            with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
                video_tensors = self.runner.inference(noises=noises, conditions=conditions, dit_offload=True, **text_embeds_dict)
            self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()
            self.runner.vae.to(self.device)
            samples = self.runner.vae_decode(video_tensors)
            final_sample = samples[0]
            input_video_sample = input_videos[0]
            if final_sample.shape[1] < input_video_sample.shape[1]:
                input_video_sample = input_video_sample[:, :final_sample.shape[1]]
            final_sample = wavelet_reconstruction(rearrange(final_sample, "c t h w -> t c h w"), rearrange(input_video_sample, "c t h w -> t c h w"))
            final_sample = rearrange(final_sample, "t c h w -> t h w c")
            final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
            final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
            mediapy.write_video(output_video_path, final_sample_np, fps=24)
            logger.info(f"HD Mastered video saved to: {output_video_path}")
            return output_video_path
        finally:
            self._unload_runner()

# --- Singleton Instance ---
seedvr_manager_singleton = SeedVrManager()