File size: 14,631 Bytes
20cd2b7
74b4ab5
 
20cd2b7
 
 
 
 
 
 
74b4ab5
 
 
20cd2b7
 
 
74b4ab5
494e411
20cd2b7
 
74b4ab5
20cd2b7
 
74b4ab5
 
20cd2b7
 
74b4ab5
 
 
20cd2b7
 
 
 
 
 
 
 
 
74b4ab5
20cd2b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3367c
 
 
20cd2b7
 
 
 
 
9c3367c
20cd2b7
 
 
9c3367c
20cd2b7
 
 
 
 
 
 
 
96cf923
9c3367c
20cd2b7
 
 
 
9af8c0d
20cd2b7
 
9c3367c
20cd2b7
 
 
 
9c3367c
20cd2b7
 
9c3367c
20cd2b7
9c3367c
20cd2b7
 
 
 
9c3367c
20cd2b7
494e411
9c3367c
 
 
 
20cd2b7
9c3367c
20cd2b7
9c3367c
20cd2b7
 
9c3367c
 
 
 
 
 
 
 
 
 
 
 
 
 
8d75895
9c3367c
 
96cf923
20cd2b7
9c3367c
 
 
 
 
 
 
 
 
20cd2b7
 
9c3367c
 
 
 
 
 
 
 
 
 
 
20cd2b7
 
 
9c3367c
20cd2b7
 
9c3367c
 
9af8c0d
9c3367c
 
 
 
 
 
 
 
 
20cd2b7
9c3367c
 
 
 
 
20cd2b7
9c3367c
 
9af8c0d
9c3367c
 
9af8c0d
8cc88ac
9c3367c
 
 
 
8cc88ac
9c3367c
 
 
 
 
 
 
 
 
 
8cc88ac
9c3367c
 
 
 
8cc88ac
9c3367c
 
 
 
 
 
 
8cc88ac
9c3367c
20cd2b7
 
9c3367c
 
8d75895
9c3367c
 
 
 
 
 
 
 
 
 
 
 
20cd2b7
9c3367c
 
 
 
8d75895
20cd2b7
9c3367c
 
 
 
 
 
20cd2b7
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# deformes4D_engine.py
# Copyright (C) 4 de Agosto de 2025  Carlos Rodrigues dos Santos
#
# MODIFICATIONS FOR ADUC-SDR:
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
#
# This file is part of the ADUC-SDR project. It contains the core logic for
# video fragment generation, latent manipulation, and dynamic editing, 
# governed by the ADUC orchestrator.
# This component is licensed under the GNU Affero General Public License v3.0.

import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import random
import gc

from ltx_manager_helpers import ltx_manager_singleton
from gemini_helpers import gemini_singleton 
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode

logger = logging.getLogger(__name__)

@dataclass
class LatentConditioningItem:
    latent_tensor: torch.Tensor
    media_frame_number: int
    conditioning_strength: float

class Deformes4DEngine:
    def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
        self.ltx_manager = ltx_manager
        self.workspace_dir = workspace_dir
        self._vae = None
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        logger.info("Especialista Deformes4D (SDR Executor) inicializado.")

    @property
    def vae(self):
        if self._vae is None:
            self._vae = self.ltx_manager.workers[0].pipeline.vae
        self._vae.to(self.device); self._vae.eval()
        return self._vae

    def save_latent_tensor(self, tensor: torch.Tensor, path: str):
        torch.save(tensor.cpu(), path)
        logger.info(f"Tensor latente salvo em: {path}")

    def load_latent_tensor(self, path: str) -> torch.Tensor:
        tensor = torch.load(path, map_location=self.device)
        logger.info(f"Tensor latente carregado de: {path} para o dispositivo {self.device}")
        return tensor

    @torch.no_grad()
    def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
        tensor = tensor.to(self.device, dtype=self.vae.dtype)
        return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)

    @torch.no_grad()
    def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
        latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
        timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
        return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)

    def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
        if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0:
            logger.warning("Tentativa de salvar um tensor de vídeo inválido. Abortando.")
            return
        video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
        video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
        video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
        with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer:
            for frame in video_np: writer.append_data(frame)
        logger.info(f"Vídeo salvo em: {path}")

    def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
        if image.size != target_resolution:
            logger.info(f"  - AÇÃO: Redimensionando imagem de {image.size} para {target_resolution} antes da conversão para latente.")
            return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
        return image

    def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
        image_np = np.array(pil_image).astype(np.float32) / 255.0
        tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
        tensor = (tensor * 2.0) - 1.0
        return self.pixels_to_latents(tensor)
        
    def _generate_video_from_latents(self, latent_tensor, base_name):
        silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent.mp4")
        pixel_tensor = self.latents_to_pixels(latent_tensor)
        self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24)
        del pixel_tensor; gc.collect()
        return silent_video_path

    def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
        final_ltx_params = {**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1], 'video_total_frames': total_frames_to_generate, 'video_fps': 24, 'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items}
        new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params)
        return new_full_latents

    def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str:
        if not video_paths: raise gr.Error("Nenhum fragmento de vídeo para montar.")
        list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
        with open(list_file_path, 'w', encoding='utf-8') as f:
            for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n")
        cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
        logger.info("Executando concatenação FFmpeg...")
        try:
            subprocess.run(cmd_list, check=True, capture_output=True, text=True)
        except subprocess.CalledProcessError as e:
            logger.error(f"Erro no FFmpeg: {e.stderr}")
            raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}")
        return output_path
    
    def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list, seconds_per_fragment: float, 
                            trim_chunks: int, echo_chunks: int,
                            handler_strength: float, destination_convergence_strength: float, video_resolution: int, 
                            use_continuity_director: bool, progress: gr.Progress = gr.Progress()):
        
        base_ltx_params = {"guidance_scale": 1.0, "stg_scale": 0.0, "rescaling_scale": 0.15, "num_inference_steps": 20}
        keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
        video_clips_paths, story_history = [], ""
        target_resolution_tuple = (video_resolution, video_resolution) 
        
        total_frames_base = self._quantize_to_multiple(round(seconds_per_fragment * 24), 8)
        if total_frames_base == 0: total_frames_base = 8
        
        logger.info("="*50)
        logger.info("CÁLCULOS DE GERAÇÃO E GUIAS (BASEADO EM CHUNKS):")
        logger.info(f"  - Duração Base Solicitada: {total_frames_base} frames ({total_frames_base // 8} chunks)")
        logger.info(f"  - N_Corte para guias: {trim_chunks} chunks")
        logger.info(f"  - N_Eco (Dejavu) para guias: {echo_chunks} chunks")
        logger.info("="*50)

        dejavu_latent, evo_latent, last_eco_chunk = None, None, None
        
        if len(keyframe_paths) < 3:
            raise gr.Error(f"O modelo de geração requer no mínimo 3 keyframes (Passado, Presente, Futuro). Você forneceu {len(keyframe_paths)}.")
        
        num_transitions_to_generate = len(keyframe_paths) - 2
        logger.info(f"Modelo 'K-2' ativado: {len(keyframe_paths)} keyframes resultarão em {num_transitions_to_generate} fragmentos de vídeo.")
        
        for i in range(num_transitions_to_generate):
            start_keyframe_index = i + 1
            
            logger.info(f"--- INICIANDO FRAGMENTO {i+1}/{num_transitions_to_generate} (índice de loop i={i}) ---")
            progress((i + 1) / num_transitions_to_generate, desc=f"Produzindo Transição {i+1}/{num_transitions_to_generate}")
            
            past_keyframe_path = keyframe_paths[start_keyframe_index - 1]
            start_keyframe_path = keyframe_paths[start_keyframe_index]
            destination_keyframe_path = keyframe_paths[start_keyframe_index + 1]
            future_story_prompt = storyboard[start_keyframe_index + 1] if (start_keyframe_index + 1) < len(storyboard) else "A cena final."

            
            decision = gemini_singleton.get_cinematic_decision(
                global_prompt,
                story_history,
                past_keyframe_path,
                start_keyframe_path,
                destination_keyframe_path,
                storyboard[start_keyframe_index - 1], # Story para o Keyframe Passado
                storyboard[start_keyframe_index],    # Story para o Keyframe de Início (Presente)
                future_story_prompt
            )
            transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
            
            story_history += f"\n- Ato {i+1} ({transition_type}): {motion_prompt}"

            total_frames_to_generate = total_frames_base
            
            conditioning_items = []
            logger.info(f"  [0. PREPARAÇÃO] Montando itens de condicionamento para K{start_keyframe_index} -> K{start_keyframe_index+1}.")
                        
            
            if last_eco_chunk is None:
               # Nenhum eco → sempre trata como "primeiro fragmento"
               img_start = self._preprocess_image_for_latent_conversion(
               Image.open(start_keyframe_path).convert("RGB"),
                   target_resolution_tuple
               )
               conditioning_items.append(
                   LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0)
               )
            else:
               # Usa eco + handler do fragmeto anterior 
               conditioning_items.append(LatentConditioningItem(last_eco_chunk, 0, 1.0))
               handler_frame = (echo_chunks + trim_chunks) * 8
               conditioning_items.append(LatentConditioningItem(handler_Chunk, handler_frame, handler_strength))
              
            
            img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
            conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), total_frames_base, destination_convergence_strength))

            current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
            new_full_latents = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_to_generate)


            # --- [INÍCIO] Bloco de Verificação de Frames por Chunk ---
            logger.info("--- [VERIFICAÇÃO DE CHUNKS INDIVIDUAIS] ---")
            total_chunks_verificados = new_full_latents.shape[2]
            for chunk_idx in range(total_chunks_verificados):
                try:
                    # Isola o chunk atual
                    single_chunk_latent = new_full_latents[:, :, chunk_idx:chunk_idx+1, :, :]
                    
                    # Gera um nome de arquivo temporário para o vídeo do chunk
                    temp_video_base_name = f"debug_chunk_{chunk_idx}"
                    
                    # Converte o latente do chunk em um vídeo MP4
                    temp_video_path = self._generate_video_from_latents(single_chunk_latent, temp_video_base_name)
                    
                    # Conta os frames no vídeo gerado
                    if os.path.exists(temp_video_path):
                        with imageio.get_reader(temp_video_path) as reader:
                            frame_count = reader.count_frames()
                        logger.info(f"  - VERIFICADO: Chunk {chunk_idx} gerou um vídeo com {frame_count} frames.")
                        # Apaga o vídeo de debug
                        os.remove(temp_video_path)
                    else:
                        logger.warning(f"  - FALHA: Não foi possível gerar o vídeo para o Chunk {chunk_idx}.")
                
                except Exception as e:
                    logger.error(f"  - ERRO ao verificar Chunk {chunk_idx}: {e}")
            logger.info("--- [FIM DA VERIFICAÇÃO] ---")
            # --- [FIM] Bloco de Verificação ---
            
            logger.info(f"  [1. GERAÇÃO] Tensor latente bruto gerado com shape: {new_full_latents.shape}.")
            
            
            total_chunks = new_full_latents.shape[2]
            logger.info(f"  [GUIAS] Extraindo guias de continuidade para a PRÓXIMA iteração (Total: {total_chunks} chunks).")
                
            handler_Chunk = new_full_latents[:, :, -1:, :, :].clone()
            logger.info(f"    - 'handler_Chunk' (guia de evolução) extraído do chunk final (índice {total_chunks-1}).")
            
            index_of_last_usable_chunk = total_chunks
            end_chunk_index = index_of_last_usable_chunk - trim_chunks
            start_chunk_index = end_chunk_index - echo_chunks
            
            logger.info(f"    - Fatia de chunks para 'Dejavu' (guia de memória) será: [{start_chunk_index}:{end_chunk_index}].")
            last_eco_chunk = new_full_latents[:, :, start_chunk_index:end_chunk_index, :, :].clone()
            
            logger.info(f"  [2. EDIÇÃO] Realizando a montagem do clipe de vídeo a partir do tensor bruto.")
            latents_for_video = new_full_latents

            latents_for_video = latents_for_video[:, :, :1, :, :]

            latents_for_video = latents_for_video[:, :, echo_chunks:-(trim_chunks), :, :]
              
            base_name = f"fragment_{i}_{int(time.time())}"
            
            logger.info(f"  [3. DECODIFICAÇÃO] Tensor final para o clipe tem {latents_for_video.shape[2]} chunks. Enviando para gerar vídeo.")
            video_path = self._generate_video_from_latents(latents_for_video, base_name)
            video_clips_paths.append(video_path)
            yield {"fragment_path": video_path}
                 
        final_movie_path = os.path.join(self.workspace_dir, f"final_movie_silent_{int(time.time())}.mp4")
        self.concatenate_videos_ffmpeg(video_clips_paths, final_movie_path)
        
        logger.info(f"Filme completo salvo em: {final_movie_path}")
        yield {"final_path": final_movie_path}

    def _quantize_to_multiple(self, n, m):
        if m == 0: return n
        quantized = int(round(n / m) * m)
        return m if n > 0 and quantized == 0 else quantized