Spaces:
Running
Running
File size: 25,572 Bytes
80f110c f1ee128 80f110c a931c35 f1ee128 80f110c f1ee128 80f110c f1ee128 80f110c f1ee128 80f110c b3f4ecb f1ee128 80f110c f1ee128 80f110c 5c37037 80f110c f1ee128 80f110c f1ee128 80f110c a931c35 f1ee128 5c37037 f1ee128 a93f9b3 5c37037 f1ee128 80f110c f1ee128 80f110c ad80405 80f110c f1ee128 80f110c f1ee128 80f110c f1ee128 80f110c 5c37037 80f110c f1ee128 80f110c f1ee128 80f110c 6520d03 f1ee128 6520d03 b3f4ecb 80f110c 6520d03 80f110c a931c35 80f110c a931c35 80f110c f1ee128 80f110c f1ee128 a931c35 f1ee128 a931c35 f1ee128 6520d03 f1ee128 a931c35 f1ee128 a931c35 f1ee128 a931c35 f1ee128 a931c35 f1ee128 a931c35 f1ee128 a931c35 f1ee128 a931c35 80f110c a931c35 80f110c a931c35 80f110c 5c37037 f1ee128 5c37037 f1ee128 80f110c 5c37037 80f110c f1ee128 80f110c f1ee128 80f110c b3f4ecb f1ee128 b3f4ecb a93f9b3 a931c35 f1ee128 5c37037 a931c35 f1ee128 a931c35 80f110c a93f9b3 80f110c f1ee128 80f110c 5c37037 80f110c f1ee128 80f110c f1ee128 903baeb 80f110c f1ee128 80f110c b3f4ecb 80f110c f1ee128 80f110c 8bbbad5 5c37037 80f110c 6520d03 80f110c 6520d03 80f110c f1ee128 80f110c 8bbbad5 80f110c f1ee128 80f110c f1ee128 80f110c f1ee128 903baeb f1ee128 903baeb f1ee128 903baeb f1ee128 80f110c f1ee128 80f110c 6520d03 80f110c f1ee128 80f110c 6520d03 80f110c f1ee128 80f110c 6520d03 80f110c 6520d03 80f110c f1ee128 903baeb f1ee128 a93f9b3 b3f4ecb a93f9b3 b3f4ecb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
# -*- coding: utf-8 -*-
"""
HF Space - Remote Indexer (No-Qdrant)
Stockage & recherche vectorielle avec 🤗 datasets + FAISS (local), UI Gradio.
Pipeline:
- /index: chunk → embeddings (HF Inference ou dummy) → Dataset.from_dict → add_faiss_index(IP) → save_to_disk
- /count: lit le dataset sur disque (si non chargé) → renvoie nb de lignes
- /query: embed requête → dataset.get_nearest_examples('embedding', query, k)
- /wipe: supprime le dossier projet
- /export_hub (optionnel): pousse le dossier projet dans un repo Dataset du Hub
ENV:
- EMB_PROVIDER ("hf" | "dummy", défaut "hf")
- HF_EMBED_MODEL (ex: "BAAI/bge-m3" | "intfloat/e5-base-v2")
- HUGGINGFACEHUB_API_TOKEN (requis si EMB_PROVIDER=hf)
- EMB_FALLBACK_TO_DUMMY (true/false)
- DATA_DIR (défaut "/data") → stockage local par projet
- HF_DATASET_REPO (optionnel "username/my_proj_vectors") pour export
- LOG_LEVEL (DEBUG par défaut)
- UI_PATH ("/ui")
- PORT (7860)
"""
from __future__ import annotations
import os
import io
import re
import json
import time
import uuid
import shutil
import hashlib
import logging
import asyncio
import threading
from typing import List, Dict, Any, Optional, Tuple
import numpy as np
import httpx
import uvicorn
import gradio as gr
import faiss # type: ignore
from pydantic import BaseModel, Field, ValidationError
from fastapi import FastAPI, HTTPException, Query
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import RedirectResponse, StreamingResponse
from datasets import Dataset, Features, Sequence, Value, load_from_disk
try:
from huggingface_hub import HfApi, create_repo
except Exception:
HfApi = None
create_repo = None
# ------------------------------------------------------------------------------
# Config & logs
# ------------------------------------------------------------------------------
LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG").upper()
logging.basicConfig(
level=getattr(logging, LOG_LEVEL, logging.DEBUG),
format="%(asctime)s - %(levelname)s - %(message)s",
)
LOG = logging.getLogger("remote_indexer_noqdrant")
EMB_PROVIDER = os.getenv("EMB_PROVIDER", "hf").lower() # "hf" | "dummy"
HF_EMBED_MODEL = os.getenv("HF_EMBED_MODEL", "BAAI/bge-m3")
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "")
EMB_FALLBACK_TO_DUMMY = os.getenv("EMB_FALLBACK_TO_DUMMY", "false").lower() in ("1","true","yes","on")
DATA_DIR = os.getenv("DATA_DIR", "/data")
os.makedirs(DATA_DIR, exist_ok=True)
UI_PATH = os.getenv("UI_PATH", "/ui")
HF_DATASET_REPO = os.getenv("HF_DATASET_REPO", "").strip() # optionnel
if EMB_PROVIDER == "hf" and not HF_TOKEN and not EMB_FALLBACK_TO_DUMMY:
LOG.warning("EMB_PROVIDER=hf sans HUGGINGFACEHUB_API_TOKEN (pas de fallback). Mets EMB_PROVIDER=dummy ou EMB_FALLBACK_TO_DUMMY=true pour tester.")
# ------------------------------------------------------------------------------
# Modèles Pydantic
# ------------------------------------------------------------------------------
class FileItem(BaseModel):
path: str
text: str
class IndexRequest(BaseModel):
project_id: str = Field(..., min_length=1)
files: List[FileItem] = Field(default_factory=list)
chunk_size: int = Field(200, ge=64, le=4096)
overlap: int = Field(20, ge=0, le=512)
batch_size: int = Field(32, ge=1, le=1024)
store_text: bool = True
class QueryRequest(BaseModel):
project_id: str
text: str
top_k: int = Field(5, ge=1, le=100)
class JobState(BaseModel):
job_id: str
project_id: str
stage: str = "pending" # pending -> embedding -> indexing -> done/failed
total_files: int = 0
total_chunks: int = 0
embedded: int = 0
indexed: int = 0
errors: List[str] = Field(default_factory=list)
messages: List[str] = Field(default_factory=list)
started_at: float = Field(default_factory=time.time)
finished_at: Optional[float] = None
def log(self, msg: str) -> None:
stamp = time.strftime("%H:%M:%S")
line = f"[{stamp}] {msg}"
self.messages.append(line)
LOG.debug(f"[{self.job_id}] {msg}")
JOBS: Dict[str, JobState] = {}
# In-memory cache {project_id: (Dataset, dim)}
DATASETS: Dict[str, Tuple[Dataset, int]] = {}
# ------------------------------------------------------------------------------
# Utils
# ------------------------------------------------------------------------------
def hash8(s: str) -> str:
return hashlib.sha256(s.encode("utf-8")).hexdigest()[:16]
def l2_normalize(vec: List[float]) -> List[float]:
arr = np.array(vec, dtype=np.float32)
n = float(np.linalg.norm(arr))
if n > 0:
arr = arr / n
return arr.astype(np.float32).tolist()
def flatten_any(x: Any) -> List[float]:
if isinstance(x, (list, tuple)):
if len(x) > 0 and isinstance(x[0], (list, tuple)):
return flatten_any(x[0])
return list(map(float, x))
raise ValueError("Embedding vector mal formé")
def chunk_text(text: str, chunk_size: int, overlap: int) -> List[Tuple[int, int, str]]:
text = text or ""
if not text.strip():
return []
res = []
n = len(text)
i = 0
while i < n:
j = min(i + chunk_size, n)
chunk = text[i:j]
if len(chunk.strip()) >= 30:
res.append((i, j, chunk))
i = j - overlap
if i <= 0:
i = j
return res
def project_paths(project_id: str) -> Dict[str, str]:
base = os.path.join(DATA_DIR, project_id)
return {
"base": base,
"ds_dir": os.path.join(base, "dataset"),
"faiss_dir": os.path.join(base, "faiss"),
"faiss_file": os.path.join(base, "faiss", "emb.faiss"),
"meta_file": os.path.join(base, "meta.json"),
}
def save_meta(meta_path: str, data: Dict[str, Any]) -> None:
os.makedirs(os.path.dirname(meta_path), exist_ok=True)
with open(meta_path, "w", encoding="utf-8") as f:
json.dump(data, f, indent=2, ensure_ascii=False)
def load_meta(meta_path: str) -> Dict[str, Any]:
if not os.path.exists(meta_path):
return {}
try:
with open(meta_path, "r", encoding="utf-8") as f:
return json.load(f)
except Exception:
return {}
# ------------------------------------------------------------------------------
# Embeddings (HF Inference ou dummy)
# ------------------------------------------------------------------------------
def _maybe_prefix_for_model(texts: List[str], model_name: str) -> List[str]:
m = (model_name or "").lower()
if "e5" in m:
# E5: "query: ..." / "passage: ..." etc. Ici on uniformise simple.
return [("query: " + t) for t in texts]
return texts
async def embed_hf(client: httpx.AsyncClient, texts: List[str], model: str = HF_EMBED_MODEL, token: str = HF_TOKEN) -> List[List[float]]:
if not token:
raise HTTPException(status_code=400, detail="HUGGINGFACEHUB_API_TOKEN manquant pour EMB_PROVIDER=hf")
url = f"https://api-inference.huggingface.co/models/{model}"
headers = {"Authorization": f"Bearer {token}"}
inputs = _maybe_prefix_for_model(texts, model)
payload = {"inputs": inputs, "options": {"wait_for_model": True}}
LOG.debug(f"HF POST model={model} n_texts={len(texts)}")
r = await client.post(url, headers=headers, json=payload, timeout=180)
if r.status_code != 200:
detail = r.text
LOG.error(f"HF Inference error {r.status_code}: {detail[:400]}")
raise HTTPException(status_code=502, detail=f"HF Inference error {r.status_code}: {detail}")
data = r.json()
embeddings: List[List[float]] = []
if isinstance(data, list):
for row in data:
vec = flatten_any(row)
embeddings.append(l2_normalize(vec))
else:
vec = flatten_any(data)
embeddings.append(l2_normalize(vec))
return embeddings
def embed_dummy(texts: List[str], dim: int = 128) -> List[List[float]]:
out: List[List[float]] = []
for t in texts:
h = hashlib.sha256(t.encode("utf-8")).digest()
arr = np.frombuffer((h * ((dim // len(h)) + 1))[:dim], dtype=np.uint8).astype(np.float32)
arr = (arr - 127.5) / 127.5
arr = arr / (np.linalg.norm(arr) + 1e-9)
out.append(arr.astype(np.float32).tolist())
return out
async def embed_texts(client: httpx.AsyncClient, texts: List[str]) -> List[List[float]]:
if EMB_PROVIDER == "hf":
try:
return await embed_hf(client, texts)
except Exception as e:
if EMB_FALLBACK_TO_DUMMY:
LOG.warning(f"Fallback embeddings → dummy (cause: {e})")
return embed_dummy(texts, dim=128)
raise
return embed_dummy(texts, dim=128)
# ------------------------------------------------------------------------------
# Indexation (datasets + FAISS)
# ------------------------------------------------------------------------------
async def build_dataset_with_faiss(job: JobState, req: IndexRequest) -> None:
"""
Construit un dataset HuggingFace avec colonnes:
- path (str), text (optionnel), chunk (int), start (int), end (int), embedding (float32[])
Ajoute un index FAISS (Inner Product) et persiste sur disque.
"""
try:
job.stage = "embedding"
job.total_files = len(req.files)
job.log(
f"Index start project={req.project_id} files={len(req.files)} "
f"chunk_size={req.chunk_size} overlap={req.overlap} batch_size={req.batch_size} store_text={req.store_text} "
f"provider={EMB_PROVIDER} model={HF_EMBED_MODEL}"
)
# Chunking
records: List[Dict[str, Any]] = []
for f in req.files:
chunks = chunk_text(f.text, req.chunk_size, req.overlap)
if not chunks:
job.log(f"{f.path}: 0 chunk (trop court ou vide)")
for idx, (start, end, ch) in enumerate(chunks):
payload = {"path": f.path, "chunk": idx, "start": start, "end": end}
if req.store_text:
payload["text"] = ch
else:
payload["text"] = None
payload["raw"] = ch
records.append(payload)
job.total_chunks = len(records)
job.log(f"Total chunks = {job.total_chunks}")
if job.total_chunks == 0:
job.stage = "failed"
job.errors.append("Aucun chunk à indexer.")
job.finished_at = time.time()
return
# Embeddings par batch
async with httpx.AsyncClient(timeout=180) as client:
all_vecs: List[List[float]] = []
B = max(8, min(64, req.batch_size * 2))
i = 0
while i < len(records):
sub = records[i : i + B]
texts = [r["raw"] for r in sub]
vecs = await embed_texts(client, texts)
if len(vecs) != len(sub):
raise HTTPException(status_code=500, detail="Embedding batch size mismatch")
all_vecs.extend(vecs)
job.embedded += len(vecs)
job.log(f"Embeddings {job.embedded}/{job.total_chunks}")
i += B
vec_dim = len(all_vecs[0])
job.log(f"Embeddings dim={vec_dim}")
# Prépare colonnes du dataset
paths = [r["path"] for r in records]
chunks = [int(r["chunk"]) for r in records]
starts = [int(r["start"]) for r in records]
ends = [int(r["end"]) for r in records]
texts = [r.get("text") for r in records]
features = Features({
"path": Value("string"),
"chunk": Value("int32"),
"start": Value("int32"),
"end": Value("int32"),
"text": Value("string"), # peut contenir None -> sera "None" si None ; OK pour tests
"embedding": Sequence(Value("float32")),
})
ds = Dataset.from_dict(
{
"path": paths,
"chunk": chunks,
"start": starts,
"end": ends,
"text": texts,
"embedding": [np.array(v, dtype=np.float32) for v in all_vecs],
},
features=features,
)
# Ajoute index FAISS (Inner Product sur vecteurs normalisés ~ cosine)
job.stage = "indexing"
ds.add_faiss_index(column="embedding", metric_type=faiss.METRIC_INNER_PRODUCT)
job.indexed = ds.num_rows
job.log(f"FAISS index ajouté ({ds.num_rows} points)")
# Persistance disque
p = project_paths(req.project_id)
os.makedirs(p["faiss_dir"], exist_ok=True)
ds.save_to_disk(p["ds_dir"])
ds.save_faiss_index("embedding", p["faiss_file"])
save_meta(p["meta_file"], {"dim": vec_dim, "rows": ds.num_rows, "model": HF_EMBED_MODEL, "ts": time.time()})
# Cache mémoire
DATASETS[req.project_id] = (ds, vec_dim)
job.stage = "done"
job.finished_at = time.time()
job.log(f"Dataset sauvegardé dans {p['ds_dir']}, index FAISS → {p['faiss_file']}")
except Exception as e:
job.stage = "failed"
job.errors.append(str(e))
job.finished_at = time.time()
job.log(f"❌ Exception: {e}")
def _run_job_in_thread(job: JobState, req: IndexRequest) -> None:
def _runner():
try:
asyncio.run(build_dataset_with_faiss(job, req))
except Exception as e:
job.stage = "failed"
job.errors.append(str(e))
job.finished_at = time.time()
job.log(f"❌ Thread exception: {e}")
t = threading.Thread(target=_runner, daemon=True)
t.start()
def create_and_start_job(req: IndexRequest) -> JobState:
job_id = uuid.uuid4().hex[:12]
job = JobState(job_id=job_id, project_id=req.project_id)
JOBS[job_id] = job
job.log(f"Job {job_id} créé pour project {req.project_id}")
_run_job_in_thread(job, req)
return job
# ------------------------------------------------------------------------------
# Chargement / Query helpers
# ------------------------------------------------------------------------------
def ensure_loaded(project_id: str) -> Tuple[Dataset, int]:
"""Charge le dataset+faiss depuis disque si pas en cache mémoire."""
if project_id in DATASETS:
return DATASETS[project_id]
p = project_paths(project_id)
if not os.path.exists(p["ds_dir"]):
raise HTTPException(status_code=404, detail=f"Dataset absent pour projet {project_id}")
ds = load_from_disk(p["ds_dir"])
if os.path.exists(p["faiss_file"]):
ds.load_faiss_index("embedding", p["faiss_file"])
meta = load_meta(p["meta_file"])
vec_dim = int(meta.get("dim", 0)) or len(ds[0]["embedding"])
DATASETS[project_id] = (ds, vec_dim)
return ds, vec_dim
async def embed_query(text: str) -> List[float]:
async with httpx.AsyncClient(timeout=60) as client:
vec = (await embed_texts(client, [text]))[0]
return vec
# ------------------------------------------------------------------------------
# FastAPI app
# ------------------------------------------------------------------------------
fastapi_app = FastAPI(title="Remote Indexer - NoQdrant (Datasets+FAISS)")
fastapi_app.add_middleware(
CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"]
)
@fastapi_app.get("/health")
async def health():
return {"status": "ok", "emb_provider": EMB_PROVIDER, "model": HF_EMBED_MODEL}
@fastapi_app.get("/api")
async def api_info():
return {
"ok": True, "service": "remote-indexer-noqdrant",
"emb_provider": EMB_PROVIDER, "hf_model": HF_EMBED_MODEL,
"fallback_to_dummy": EMB_FALLBACK_TO_DUMMY,
"data_dir": DATA_DIR, "ui_path": UI_PATH,
"hub_export_enabled": bool(HF_DATASET_REPO and HfApi),
}
@fastapi_app.get("/")
async def root_redirect():
return RedirectResponse(url=UI_PATH, status_code=307)
@fastapi_app.post("/wipe")
async def wipe(project_id: str = Query(..., min_length=1)):
p = project_paths(project_id)
if os.path.exists(p["base"]):
shutil.rmtree(p["base"], ignore_errors=True)
if project_id in DATASETS:
DATASETS.pop(project_id, None)
return {"ok": True, "project_id": project_id, "removed": True}
@fastapi_app.post("/index")
async def index(req: IndexRequest):
job = create_and_start_job(req)
return {"job_id": job.job_id, "project_id": job.project_id}
@fastapi_app.get("/status/{job_id}")
async def status(job_id: str):
job = JOBS.get(job_id)
if not job:
raise HTTPException(status_code=404, detail="job_id inconnu")
return job.model_dump()
@fastapi_app.get("/collections/{project_id}/count")
async def coll_count(project_id: str):
try:
ds, _ = ensure_loaded(project_id)
return {"project_id": project_id, "count": ds.num_rows}
except Exception as e:
return {"project_id": project_id, "count": 0, "note": f"{e}"}
@fastapi_app.post("/query")
async def query(req: QueryRequest):
ds, vec_dim = ensure_loaded(req.project_id)
qvec = await embed_query(req.text)
if len(qvec) != vec_dim:
raise HTTPException(status_code=400, detail=f"Dim requête {len(qvec)} ≠ dim index {vec_dim}")
# get_nearest_examples renvoie (scores, examples)
scores, ex = ds.get_nearest_examples("embedding", np.array(qvec, dtype=np.float32), k=req.top_k)
results = []
for s, path, chunk, text in zip(scores, ex["path"], ex["chunk"], ex["text"]):
preview = ((text or "")[:160]).replace("\n", " ")
results.append({"score": float(s), "path": path, "chunk": int(chunk), "preview": preview})
return {"result": results, "k": req.top_k}
@fastapi_app.post("/export_hub")
async def export_hub(project_id: str = Query(..., min_length=1), repo_id: Optional[str] = None):
"""
Optionnel: push le dossier du projet (dataset + faiss + meta) dans un repo Dataset du Hub.
- HF_DATASET_REPO ou ?repo_id=... (ex: "chourmovs/deepweb_vectors")
"""
if not HfApi or not HF_TOKEN:
raise HTTPException(status_code=400, detail="huggingface_hub non dispo ou HF token absent.")
p = project_paths(project_id)
if not os.path.exists(p["ds_dir"]):
raise HTTPException(status_code=404, detail="Aucun dataset local à exporter.")
rid = (repo_id or HF_DATASET_REPO or "").strip()
if not rid:
raise HTTPException(status_code=400, detail="repo_id requis (ou HF_DATASET_REPO).")
api = HfApi(token=HF_TOKEN)
try:
create_repo(rid, repo_type="dataset", exist_ok=True, token=HF_TOKEN)
except Exception:
pass
# Zipper le dossier projet pour un upload rapide
buf = io.BytesIO()
base_dir = p["base"]
zip_name = f"{project_id}_vectors.zip"
import zipfile
with zipfile.ZipFile(buf, "w", compression=zipfile.ZIP_DEFLATED) as z:
for root, _, files in os.walk(base_dir):
for fn in files:
full = os.path.join(root, fn)
rel = os.path.relpath(full, base_dir)
z.write(full, arcname=rel)
buf.seek(0)
api.upload_file(
path_or_fileobj=buf,
path_in_repo=zip_name,
repo_id=rid,
repo_type="dataset",
)
return {"ok": True, "repo_id": rid, "file": zip_name}
# ------------------------------------------------------------------------------
# Gradio UI
# ------------------------------------------------------------------------------
def _default_two_docs() -> List[Dict[str, str]]:
a = "Alpha bravo charlie delta echo foxtrot golf hotel india. " * 3
b = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy. " * 3
return [{"path": "a.txt", "text": a}, {"path": "b.txt", "text": b}]
async def ui_wipe(project: str):
try:
resp = await wipe(project) # appelle route interne
return f"✅ Wipe ok — projet {resp['project_id']} vidé."
except Exception as e:
LOG.exception("wipe UI error")
return f"❌ Wipe erreur: {e}"
async def ui_index_sample(project: str, chunk_size: int, overlap: int, batch_size: int, store_text: bool):
files = _default_two_docs()
req = IndexRequest(
project_id=project,
files=[FileItem(**f) for f in files],
chunk_size=chunk_size,
overlap=overlap,
batch_size=batch_size,
store_text=store_text,
)
try:
job = create_and_start_job(req)
return f"🚀 Job lancé: {job.job_id}", job.job_id
except ValidationError as ve:
return f"❌ Payload invalide: {ve}", ""
except Exception as e:
LOG.exception("index UI error")
return f"❌ Index erreur: {e}", ""
async def ui_status(job_id: str):
if not job_id.strip():
return "⚠️ Renseigne un job_id"
try:
st = await status(job_id)
lines = [f"Job {st['job_id']} — stage={st['stage']} files={st['total_files']} chunks={st['total_chunks']} embedded={st['embedded']} indexed={st['indexed']}"]
lines += st.get("messages", [])[-80:]
if st.get("errors"):
lines.append("Erreurs:")
lines += [f" - {e}" for e in st['errors']]
return "\n".join(lines)
except Exception as e:
return f"❌ Status erreur: {e}"
async def ui_count(project: str):
try:
data = await coll_count(project)
return f"📊 Count — project={project} → {data['count']} points" + (f" ({data.get('note')})" if 'note' in data else "")
except Exception as e:
LOG.exception("count UI error")
return f"❌ Count erreur: {e}"
async def ui_query(project: str, text: str, topk: int):
try:
data = await query(QueryRequest(project_id=project, text=text, top_k=topk))
hits = data.get("result", [])
if not hits:
return "Aucun résultat."
out = []
for h in hits:
out.append(f"{h['score']:.4f} — {h['path']} [chunk {h['chunk']}] — {h['preview']}…")
return "\n".join(out)
except Exception as e:
LOG.exception("query UI error")
return f"❌ Query erreur: {e}"
async def ui_export(project: str, repo_id: str):
try:
resp = await export_hub(project, repo_id or None)
return f"📤 Export → dataset repo={resp['repo_id']} file={resp['file']}"
except Exception as e:
LOG.exception("export UI error")
return f"❌ Export erreur: {e}"
with gr.Blocks(title="Remote Indexer — No-Qdrant (datasets+FAISS)", analytics_enabled=False) as ui:
gr.Markdown("## 🧪 Remote Indexer — No-Qdrant (datasets+FAISS)\n"
"Wipe → Index 2 docs → Status → Count → Query\n"
f"- **Embeddings**: `{EMB_PROVIDER}` (model: `{HF_EMBED_MODEL}`) — "
f"HF token présent: `{'oui' if bool(HF_TOKEN) else 'non'}` — Fallback dummy: `{'on' if EMB_FALLBACK_TO_DUMMY else 'off'}`\n"
f"- **Data dir**: `{DATA_DIR}` — **Hub export**: `{'on' if (HF_DATASET_REPO and HfApi) else 'off'}`")
with gr.Row():
project_tb = gr.Textbox(label="Project ID", value="DEEPWEB")
jobid_tb = gr.Textbox(label="Job ID", value="", interactive=True)
with gr.Row():
wipe_btn = gr.Button("🧨 Wipe project", variant="stop")
index_btn = gr.Button("🚀 Indexer 2 documents", variant="primary")
count_btn = gr.Button("📊 Count points", variant="secondary")
with gr.Row():
chunk_size = gr.Slider(64, 1024, value=200, step=8, label="chunk_size")
overlap = gr.Slider(0, 256, value=20, step=2, label="overlap")
batch_size = gr.Slider(1, 128, value=32, step=1, label="batch_size")
store_text = gr.Checkbox(value=True, label="store_text (payload)")
out_log = gr.Textbox(lines=18, label="Logs / Résultats", interactive=False)
with gr.Row():
status_btn = gr.Button("📡 Status (refresh)")
auto_chk = gr.Checkbox(False, label="⏱️ Auto-refresh status (2 s)")
with gr.Row():
query_tb = gr.Textbox(label="Query text", value="alpha bravo")
topk = gr.Slider(1, 20, value=5, step=1, label="top_k")
query_btn = gr.Button("🔎 Query")
query_out = gr.Textbox(lines=10, label="Résultats Query", interactive=False)
with gr.Row():
repo_tb = gr.Textbox(label="Hub dataset repo (ex: user/deepweb_vectors)", value=os.getenv("HF_DATASET_REPO", ""))
export_btn = gr.Button("📤 Export to Hub", variant="secondary")
wipe_btn.click(ui_wipe, inputs=[project_tb], outputs=[out_log])
index_btn.click(ui_index_sample, inputs=[project_tb, chunk_size, overlap, batch_size, store_text], outputs=[out_log, jobid_tb])
count_btn.click(ui_count, inputs=[project_tb], outputs=[out_log])
status_btn.click(ui_status, inputs=[jobid_tb], outputs=[out_log])
timer = gr.Timer(2.0, active=False)
timer.tick(ui_status, inputs=[jobid_tb], outputs=[out_log])
auto_chk.change(lambda x: gr.update(active=x), inputs=auto_chk, outputs=timer)
query_btn.click(ui_query, inputs=[project_tb, query_tb, topk], outputs=[query_out])
export_btn.click(ui_export, inputs=[project_tb, repo_tb], outputs=[out_log])
# Monte l'UI
app = gr.mount_gradio_app(fastapi_app, ui, path=UI_PATH)
if __name__ == "__main__":
port = int(os.getenv("PORT", "7860"))
LOG.info(f"Démarrage Uvicorn sur 0.0.0.0:{port} (UI_PATH={UI_PATH})")
uvicorn.run(app, host="0.0.0.0", port=port)
|