File size: 17,465 Bytes
80f110c
 
c6a5264
80f110c
f1ee128
 
80f110c
c6a5264
80f110c
c6a5264
 
80f110c
 
c6a5264
8726e17
80f110c
8726e17
c6a5264
80f110c
c6a5264
80f110c
c6a5264
 
 
 
 
 
 
 
 
 
 
8726e17
c6a5264
 
 
 
 
8726e17
 
 
 
c6a5264
8726e17
 
 
 
 
 
 
 
 
c6a5264
 
8726e17
 
 
 
 
c6a5264
 
 
80f110c
 
 
c6a5264
80f110c
 
 
f1ee128
c6a5264
 
 
80f110c
 
 
82a76f0
c6a5264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80f110c
c6a5264
 
 
 
 
 
82a76f0
c6a5264
 
 
8726e17
 
 
 
 
c6a5264
 
 
 
 
 
8726e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6a5264
 
8726e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6a5264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80f110c
 
8726e17
c6a5264
 
 
 
 
 
8726e17
c6a5264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8726e17
80f110c
c6a5264
 
80f110c
 
c6a5264
 
 
 
 
 
 
 
 
 
 
 
b3f4ecb
c6a5264
8726e17
 
 
 
 
 
 
a931c35
80f110c
c6a5264
8726e17
80f110c
 
c6a5264
 
 
 
 
8726e17
82a76f0
c6a5264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8726e17
 
 
 
 
 
 
 
c6a5264
 
8726e17
c6a5264
 
 
 
 
 
 
8726e17
 
 
 
 
 
 
c6a5264
 
 
 
 
 
 
82a76f0
c6a5264
 
 
 
 
 
82a76f0
c6a5264
 
 
 
 
 
80f110c
c6a5264
 
 
 
 
 
 
 
 
 
 
 
8726e17
 
 
 
 
 
 
c6a5264
8726e17
c6a5264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8726e17
c6a5264
 
 
 
 
 
8726e17
c6a5264
 
 
 
 
 
 
 
8726e17
c6a5264
 
 
8726e17
c6a5264
 
 
 
80f110c
c6a5264
 
 
80f110c
c6a5264
 
80f110c
c6a5264
80f110c
c6a5264
903baeb
c6a5264
 
903baeb
c6a5264
 
8726e17
 
 
c6a5264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8726e17
c6a5264
b3f4ecb
c6a5264
 
8726e17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# -*- coding: utf-8 -*-
from __future__ import annotations

import os
import io
import json
import time
import tarfile
import logging
import hashlib
from typing import Dict, Any, List, Tuple, Optional

import numpy as np
import faiss
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel

import gradio as gr

# =============================================================================
# LOGGING
# =============================================================================
LOG = logging.getLogger("remote-indexer-space")
if not LOG.handlers:
    h = logging.StreamHandler()
    h.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
    LOG.addHandler(h)
LOG.setLevel(logging.INFO)

# =============================================================================
# CONFIG (via ENV)
# =============================================================================
PORT = int(os.getenv("PORT", "7860"))
DATA_ROOT = os.getenv("DATA_ROOT", "/tmp/data")  # persistant dans le conteneur Space
os.makedirs(DATA_ROOT, exist_ok=True)

# Provider d'embeddings:
#   - "dummy" : vecteurs aléatoires déterministes (très rapide)
#   - "st"    : Sentence-Transformers (CPU-friendly, simple)
#   - "hf"    : Transformers (AutoModel/AutoTokenizer, pooling manuel)
EMB_PROVIDER = os.getenv("EMB_PROVIDER", "dummy").strip().lower()

# Modèle embeddings (utilisé si provider != "dummy")
# Reco rapide et multilingue (FR ok) : paraphrase-multilingual-MiniLM-L12-v2 (dim=384)
EMB_MODEL = os.getenv("EMB_MODEL", "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2").strip()

# Batch d'encodage
EMB_BATCH = int(os.getenv("EMB_BATCH", "32"))

# Dimension par défaut (dummy) — pour st/hf on lit depuis le modèle
EMB_DIM = int(os.getenv("EMB_DIM", "128"))

# Cache global lazy
_ST_MODEL = None
_HF_TOKENIZER = None
_HF_MODEL = None

# =============================================================================
# JOB STATE
# =============================================================================
class JobState(BaseModel):
    job_id: str
    project_id: str
    stage: str = "pending"          # pending -> chunking -> embedding -> indexing -> done/failed
    total_files: int = 0
    total_chunks: int = 0
    embedded: int = 0
    indexed: int = 0
    errors: List[str] = []
    messages: List[str] = []
    started_at: float = time.time()
    finished_at: Optional[float] = None

JOBS: Dict[str, JobState] = {}

def _now() -> str:
    return time.strftime("%H:%M:%S")

def _proj_dirs(project_id: str) -> Tuple[str, str, str]:
    base = os.path.join(DATA_ROOT, project_id)
    ds_dir = os.path.join(base, "dataset")
    fx_dir = os.path.join(base, "faiss")
    os.makedirs(ds_dir, exist_ok=True)
    os.makedirs(fx_dir, exist_ok=True)
    return base, ds_dir, fx_dir

def _add_msg(st: JobState, msg: str):
    st.messages.append(f"[{_now()}] {msg}")
    LOG.info("[%s] %s", st.job_id, msg)

def _set_stage(st: JobState, stage: str):
    st.stage = stage
    _add_msg(st, f"stage={stage}")

# =============================================================================
# UTILS
# =============================================================================
def _chunk_text(text: str, size: int = 200, overlap: int = 20) -> List[str]:
    text = (text or "").replace("\r\n", "\n")
    tokens = list(text)
    if size <= 0:
        return [text] if text else []
    if overlap < 0:
        overlap = 0
    chunks = []
    i = 0
    while i < len(tokens):
        j = min(i + size, len(tokens))
        chunk = "".join(tokens[i:j]).strip()
        if chunk:
            chunks.append(chunk)
        if j == len(tokens):
            break
        i = j - overlap if (j - overlap) > i else j
    return chunks

def _l2_normalize(x: np.ndarray) -> np.ndarray:
    n = np.linalg.norm(x, axis=1, keepdims=True) + 1e-12
    return x / n

# ----------------------- PROVIDER: DUMMY --------------------------------------
def _emb_dummy(texts: List[str], dim: int = EMB_DIM) -> np.ndarray:
    vecs = np.zeros((len(texts), dim), dtype="float32")
    for i, t in enumerate(texts):
        h = hashlib.sha1((t or "").encode("utf-8")).digest()
        rng = np.random.default_rng(int.from_bytes(h[:8], "little", signed=False))
        v = rng.standard_normal(dim).astype("float32")
        vecs[i] = v / (np.linalg.norm(v) + 1e-9)
    return vecs

# ----------------- PROVIDER: Sentence-Transformers ----------------------------
def _get_st_model():
    global _ST_MODEL
    if _ST_MODEL is None:
        from sentence_transformers import SentenceTransformer
        _ST_MODEL = SentenceTransformer(EMB_MODEL)
        LOG.info(f"[st] modèle chargé: {EMB_MODEL}")
    return _ST_MODEL

def _emb_st(texts: List[str]) -> np.ndarray:
    model = _get_st_model()
    vecs = model.encode(
        texts,
        batch_size=max(1, EMB_BATCH),
        convert_to_numpy=True,
        normalize_embeddings=True,
        show_progress_bar=False,
    ).astype("float32")
    return vecs

def _st_dim() -> int:
    model = _get_st_model()
    try:
        return int(model.get_sentence_embedding_dimension())
    except Exception:
        # fallback : encode une phrase et lit la shape
        v = model.encode(["dimension probe"], convert_to_numpy=True)
        return int(v.shape[1])

# ----------------------- PROVIDER: Transformers (HF) --------------------------
def _get_hf_model():
    global _HF_TOKENIZER, _HF_MODEL
    if _HF_MODEL is None or _HF_TOKENIZER is None:
        from transformers import AutoTokenizer, AutoModel
        _HF_TOKENIZER = AutoTokenizer.from_pretrained(EMB_MODEL)
        _HF_MODEL = AutoModel.from_pretrained(EMB_MODEL)
        _HF_MODEL.eval()
        LOG.info(f"[hf] modèle chargé: {EMB_MODEL}")
    return _HF_TOKENIZER, _HF_MODEL

def _mean_pool(last_hidden_state: "np.ndarray", attention_mask: "np.ndarray") -> "np.ndarray":
    # mean pooling masquée
    mask = attention_mask[..., None].astype(last_hidden_state.dtype)  # (b, t, 1)
    summed = (last_hidden_state * mask).sum(axis=1)                   # (b, h)
    counts = mask.sum(axis=1).clip(min=1e-9)                          # (b, 1)
    return summed / counts

def _emb_hf(texts: List[str]) -> np.ndarray:
    import torch
    tok, mod = _get_hf_model()
    all_vecs = []
    bs = max(1, EMB_BATCH)
    with torch.no_grad():
        for i in range(0, len(texts), bs):
            batch = texts[i:i+bs]
            enc = tok(batch, padding=True, truncation=True, return_tensors="pt")
            out = mod(**enc)
            last = out.last_hidden_state  # (b, t, h)
            pooled = _mean_pool(last.numpy(), enc["attention_mask"].numpy())  # numpy
            all_vecs.append(pooled.astype("float32"))
    vecs = np.concatenate(all_vecs, axis=0)
    return _l2_normalize(vecs)

def _hf_dim() -> int:
    # essaie de lire hidden_size
    try:
        _, mod = _get_hf_model()
        return int(getattr(mod.config, "hidden_size", 768))
    except Exception:
        return 768

# ---------------------------- DATASET / FAISS ---------------------------------
def _save_dataset(ds_dir: str, rows: List[Dict[str, Any]]):
    os.makedirs(ds_dir, exist_ok=True)
    data_path = os.path.join(ds_dir, "data.jsonl")
    with open(data_path, "w", encoding="utf-8") as f:
        for r in rows:
            f.write(json.dumps(r, ensure_ascii=False) + "\n")
    meta = {"format": "jsonl", "columns": ["path", "text", "chunk_id"], "count": len(rows)}
    with open(os.path.join(ds_dir, "meta.json"), "w", encoding="utf-8") as f:
        json.dump(meta, f, ensure_ascii=False, indent=2)

def _load_dataset(ds_dir: str) -> List[Dict[str, Any]]:
    data_path = os.path.join(ds_dir, "data.jsonl")
    if not os.path.isfile(data_path):
        return []
    out = []
    with open(data_path, "r", encoding="utf-8") as f:
        for line in f:
            try:
                out.append(json.loads(line))
            except Exception:
                continue
    return out

def _save_faiss(fx_dir: str, xb: np.ndarray, meta: Dict[str, Any]):
    os.makedirs(fx_dir, exist_ok=True)
    idx_path = os.path.join(fx_dir, "emb.faiss")
    index = faiss.IndexFlatIP(xb.shape[1])  # cosine ~ inner product si normalisé
    index.add(xb)
    faiss.write_index(index, idx_path)
    with open(os.path.join(fx_dir, "meta.json"), "w", encoding="utf-8") as f:
        json.dump(meta, f, ensure_ascii=False, indent=2)

def _load_faiss(fx_dir: str) -> faiss.Index:
    idx_path = os.path.join(fx_dir, "emb.faiss")
    if not os.path.isfile(idx_path):
        raise FileNotFoundError(f"FAISS index introuvable: {idx_path}")
    return faiss.read_index(idx_path)

def _tar_dir_to_bytes(dir_path: str) -> bytes:
    bio = io.BytesIO()
    with tarfile.open(fileobj=bio, mode="w:gz") as tar:
        tar.add(dir_path, arcname=os.path.basename(dir_path))
    bio.seek(0)
    return bio.read()

# =============================================================================
# FASTAPI
# =============================================================================
fastapi_app = FastAPI(title="remote-indexer", version="2.0.0")
fastapi_app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"],
)

class FileItem(BaseModel):
    path: str
    text: str

class IndexRequest(BaseModel):
    project_id: str
    files: List[FileItem]
    chunk_size: int = 200
    overlap: int = 20
    batch_size: int = 32
    store_text: bool = True

@fastapi_app.get("/health")
def health():
    info = {
        "ok": True,
        "service": "remote-indexer",
        "provider": EMB_PROVIDER,
        "model": EMB_MODEL if EMB_PROVIDER != "dummy" else None
    }
    return info

@fastapi_app.get("/")
def root_redirect():
    return {"ok": True, "service": "remote-indexer", "ui": "/ui"}

@fastapi_app.post("/index")
def index(req: IndexRequest):
    job_id = hashlib.sha1(f"{req.project_id}{time.time()}".encode()).hexdigest()[:12]
    st = JobState(job_id=job_id, project_id=req.project_id, stage="pending", messages=[])
    JOBS[job_id] = st
    _add_msg(st, f"Job {job_id} créé pour project {req.project_id}")
    _add_msg(st, f"Index start project={req.project_id} files={len(req.files)} chunk_size={req.chunk_size} overlap={req.overlap} batch_size={req.batch_size} store_text={req.store_text} provider={EMB_PROVIDER} model={EMB_MODEL if EMB_PROVIDER!='dummy' else '-'}")
    try:
        base, ds_dir, fx_dir = _proj_dirs(req.project_id)

        # 1) Chunking
        _set_stage(st, "chunking")
        rows: List[Dict[str, Any]] = []
        st.total_files = len(req.files)
        for it in req.files:
            txt = it.text or ""
            chunks = _chunk_text(txt, size=req.chunk_size, overlap=req.overlap)
            _add_msg(st, f"{it.path}: len(text)={len(txt)} chunks={len(chunks)}")
            for ci, ck in enumerate(chunks):
                rows.append({"path": it.path, "text": ck, "chunk_id": ci})
        st.total_chunks = len(rows)
        _add_msg(st, f"Total chunks = {st.total_chunks}")

        # 2) Embedding
        _set_stage(st, "embedding")
        if EMB_PROVIDER == "dummy":
            xb = _emb_dummy([r["text"] for r in rows], dim=EMB_DIM)
            dim = xb.shape[1]
        elif EMB_PROVIDER == "st":
            xb = _emb_st([r["text"] for r in rows])
            dim = xb.shape[1]
        else:  # "hf"
            xb = _emb_hf([r["text"] for r in rows])
            dim = xb.shape[1]

        st.embedded = xb.shape[0]
        _add_msg(st, f"Embeddings {st.embedded}/{st.total_chunks}")
        _add_msg(st, f"Embeddings dim={dim}")

        # 3) Sauvegarde dataset (texte)
        _save_dataset(ds_dir, rows)
        _add_msg(st, f"Dataset (sans index) sauvegardé dans {ds_dir}")

        # 4) FAISS
        _set_stage(st, "indexing")
        faiss_meta = {
            "dim": int(dim),
            "count": int(xb.shape[0]),
            "provider": EMB_PROVIDER,
            "model": EMB_MODEL if EMB_PROVIDER != "dummy" else None
        }
        _save_faiss(fx_dir, xb, meta=faiss_meta)
        st.indexed = int(xb.shape[0])
        _add_msg(st, f"FAISS écrit sur {os.path.join(fx_dir, 'emb.faiss')}")
        _add_msg(st, f"OK — dataset+index prêts (projet={req.project_id})")

        _set_stage(st, "done")
        st.finished_at = time.time()
        return {"job_id": job_id}
    except Exception as e:
        LOG.exception("index failed")
        st.errors.append(str(e))
        _add_msg(st, f"❌ Exception: {e}")
        st.stage = "failed"
        st.finished_at = time.time()
        raise HTTPException(status_code=500, detail=str(e))

@fastapi_app.get("/status/{job_id}")
def status(job_id: str):
    st = JOBS.get(job_id)
    if not st:
        raise HTTPException(status_code=404, detail="job inconnu")
    return JSONResponse(st.model_dump())

class SearchRequest(BaseModel):
    project_id: str
    query: str
    k: int = 5

@fastapi_app.post("/search")
def search(req: SearchRequest):
    base, ds_dir, fx_dir = _proj_dirs(req.project_id)
    rows = _load_dataset(ds_dir)
    if not rows:
        raise HTTPException(status_code=404, detail="dataset introuvable (index pas encore construit ?)")

    # Embedding de la requête avec le MÊME provider
    if EMB_PROVIDER == "dummy":
        q = _emb_dummy([req.query], dim=EMB_DIM)[0:1, :]
    elif EMB_PROVIDER == "st":
        q = _emb_st([req.query])[0:1, :]
    else:
        q = _emb_hf([req.query])[0:1, :]

    # FAISS
    index = _load_faiss(fx_dir)
    if index.d != q.shape[1]:
        raise HTTPException(status_code=500, detail=f"dim incompatibles: index.d={index.d} vs query={q.shape[1]}")
    scores, ids = index.search(q, int(max(1, req.k)))
    ids = ids[0].tolist()
    scores = scores[0].tolist()

    out = []
    for idx, sc in zip(ids, scores):
        if idx < 0 or idx >= len(rows):
            continue
        r = rows[idx]
        out.append({"path": r.get("path"), "text": r.get("text"), "score": float(sc)})
    return {"results": out}

# ----------- ARTIFACTS EXPORT -----------
@fastapi_app.get("/artifacts/{project_id}/dataset")
def download_dataset(project_id: str):
    base, ds_dir, _ = _proj_dirs(project_id)
    if not os.path.isdir(ds_dir):
        raise HTTPException(status_code=404, detail="Dataset introuvable")
    buf = _tar_dir_to_bytes(ds_dir)
    headers = {"Content-Disposition": f'attachment; filename="{project_id}_dataset.tgz"'}
    return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=headers)

@fastapi_app.get("/artifacts/{project_id}/faiss")
def download_faiss(project_id: str):
    base, _, fx_dir = _proj_dirs(project_id)
    if not os.path.isdir(fx_dir):
        raise HTTPException(status_code=404, detail="FAISS introuvable")
    buf = _tar_dir_to_bytes(fx_dir)
    headers = {"Content-Disposition": f'attachment; filename="{project_id}_faiss.tgz"'}
    return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=headers)

# =============================================================================
# GRADIO UI (facultatif)
# =============================================================================
def _ui_index(project_id: str, sample_text: str):
    files = [{"path": "sample.txt", "text": sample_text}]
    from pydantic import ValidationError
    try:
        req = IndexRequest(project_id=project_id, files=[FileItem(**f) for f in files])
    except ValidationError as e:
        return f"Erreur: {e}"
    try:
        res = index(req)
        return f"Job lancé: {res['job_id']}"
    except Exception as e:
        return f"Erreur index: {e}"

def _ui_search(project_id: str, query: str, k: int):
    try:
        res = search(SearchRequest(project_id=project_id, query=query, k=int(k)))
        return json.dumps(res, ensure_ascii=False, indent=2)
    except Exception as e:
        return f"Erreur search: {e}"

with gr.Blocks(title="Remote Indexer (FAISS)", analytics_enabled=False) as ui:
    gr.Markdown("## Remote Indexer — demo UI (API: `/index`, `/status/{job}`, `/search`, `/artifacts/...`).")
    gr.Markdown(f"**Provider**: `{EMB_PROVIDER}` — **Model**: `{EMB_MODEL if EMB_PROVIDER!='dummy' else '-'}'")
    with gr.Tab("Index"):
        pid = gr.Textbox(label="Project ID", value="DEEPWEB")
        sample = gr.Textbox(label="Texte d’exemple", value="Alpha bravo charlie delta echo foxtrot.", lines=4)
        btn = gr.Button("Lancer index (sample)")
        out = gr.Textbox(label="Résultat")
        btn.click(_ui_index, inputs=[pid, sample], outputs=[out])

    with gr.Tab("Search"):
        pid2 = gr.Textbox(label="Project ID", value="DEEPWEB")
        q = gr.Textbox(label="Query", value="alpha")
        k = gr.Slider(1, 20, value=5, step=1, label="k")
        btn2 = gr.Button("Rechercher")
        out2 = gr.Code(label="Résultats")
        btn2.click(_ui_search, inputs=[pid2, q, k], outputs=[out2])

fastapi_app = gr.mount_gradio_app(fastapi_app, ui, path="/ui")

# =============================================================================
# MAIN
# =============================================================================
if __name__ == "__main__":
    import uvicorn
    LOG.info("Démarrage Uvicorn sur 0.0.0.0:%s (UI_PATH=/ui)", PORT)
    uvicorn.run(fastapi_app, host="0.0.0.0", port=PORT)