File size: 17,112 Bytes
27aafc2
617928b
 
27aafc2
617928b
dd6720a
2de35e1
dd6720a
 
2dd7883
dd6720a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de35e1
2dd7883
dd6720a
 
 
 
2dd7883
 
64742da
27aafc2
 
 
2dd7883
27aafc2
882bed0
33221b5
27aafc2
 
 
 
 
 
 
 
 
 
 
 
882bed0
27aafc2
 
 
 
 
 
 
 
 
dd6720a
 
 
 
 
 
 
 
 
 
 
 
 
617928b
dd6720a
 
 
 
2d09bac
dd6720a
2d09bac
dd6720a
 
2d09bac
 
 
dd6720a
 
 
2d09bac
dd6720a
 
2dd7883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27aafc2
 
64742da
27aafc2
617928b
2de35e1
27aafc2
2de35e1
2dd7883
2de35e1
617928b
 
2dd7883
 
 
2de35e1
 
 
 
 
2dd7883
 
 
 
27aafc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dd7883
27aafc2
617928b
 
 
2de35e1
617928b
2dd7883
64742da
 
 
dd6720a
 
 
 
 
 
2de35e1
 
dd6720a
 
 
 
617928b
 
dd6720a
 
64742da
27aafc2
dd6720a
27aafc2
 
617928b
dd6720a
64742da
 
dd6720a
64742da
 
dd6720a
 
64742da
dd6720a
 
 
27aafc2
dd6720a
27aafc2
dd6720a
 
64742da
dd6720a
 
 
 
2dd7883
 
64742da
2dd7883
64742da
 
2dd7883
 
64742da
2dd7883
64742da
 
 
 
 
 
 
 
 
2dd7883
64742da
 
2dd7883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64742da
 
 
 
 
2dd7883
64742da
2dd7883
64742da
 
92b24cb
2dd7883
 
64742da
2dd7883
 
64742da
2dd7883
 
64742da
2dd7883
 
 
64742da
2dd7883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64742da
 
2dd7883
 
64742da
 
 
 
2dd7883
 
 
 
 
 
 
 
 
 
 
 
2de35e1
dd6720a
 
 
64742da
2dd7883
 
27aafc2
2dd7883
 
2de35e1
dd6720a
27aafc2
64742da
2dd7883
dd6720a
 
2dd7883
64742da
2dd7883
64742da
617928b
2de35e1
445f0ca
617928b
 
dd6720a
64742da
2de35e1
 
64742da
2dd7883
2de35e1
2dd7883
2de35e1
2dd7883
64742da
2dd7883
617928b
27aafc2
617928b
dd6720a
 
27aafc2
 
617928b
 
2dd7883
27aafc2
617928b
64742da
27aafc2
64742da
617928b
64742da
 
 
2dd7883
 
dd6720a
27aafc2
2de35e1
2dd7883
 
617928b
dd6720a
2dd7883
92b24cb
dd6720a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import os, re
from typing import Dict, Tuple, List

import nltk, spacy, torch, pandas as pd, matplotlib.pyplot as plt
import torch.nn.functional as F
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from sentence_transformers import SentenceTransformer, util

# -------------------- setup --------------------
def ensure_spacy():
    try:
        return spacy.load("en_core_web_sm")
    except Exception:
        import spacy.cli
        spacy.cli.download("en_core_web_sm")
        return spacy.load("en_core_web_sm")

def ensure_nltk():
    try:
        nltk.data.find("tokenizers/punkt")
    except LookupError:
        nltk.download("punkt")

ensure_nltk()
nlp = ensure_spacy()

sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
bert_sentiment = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")

emotion_model_name = "j-hartmann/emotion-english-distilroberta-base"
emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name)
emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name)

# -------------------- constants --------------------
CSV_PATH_PLUS  = "la matrice plus.csv"   # pathways + colors + template words
CSV_PATH_COLOR = "la matrice.csv"        # color lexicon

SEQUENCE_ALIASES = {
    "Direct": "direct",
    "Feminine": "feminine",
    "Knot": "knot",
    "Masculine": "masc",
    "Pain": "pain",
    "Prayer": "prayer",
    "Precise": "precise",
    "Practical": "practical",
    "Plot": "plot",
    "Spiritual": "spiritual",
    "Sad": "sad",
}

SEQUENCE_IMAGE_FILES = {
    "direct": "direct pathway.png",
    "feminine": "fem pathway.png",
    "knot": "knot pathway.png",
    "masc": "masc pathway.png",
    "pain": "pain pathway.png",
    "prayer": "prayer pathway.png",
    "precise": "precise pathway.png",
    "practical": "practical pathway.png",
    "plot": "plot pathway.png",
    "spiritual": "spiritual pathway.png",
    "sad": "sad pathway.png"
}

GNH_DOMAINS: Dict[str, str] = {
    "Mental Wellness": "mental health, emotional clarity, peace of mind",
    "Social Wellness": "relationships, community, friendship, social harmony",
    "Economic Wellness": "income, savings, financial stability, cost of living",
    "Workplace Wellness": "career, work-life balance, promotion, productivity",
    "Physical Wellness": "physical health, sleep, fitness, exercise",
    "Environmental Wellness": "green space, nature, environmental care",
    "Health": "healthcare, medical care, recovery, well-being",
    "Education Value": "learning, education, school, knowledge, wisdom",
    "Good Governance": "freedom, justice, fairness, democratic participation",
    "Living Standards": "housing, wealth, basic needs, affordability",
    "Cultural Diversity": "tradition, language, cultural expression, heritage",
    "Political Wellness": "rights, law, free speech, civic participation",
    "Ecological Diversity": "biodiversity, forest, ecosystem, wildlife",
}

GNH_COLORS: Dict[str, str] = {
    "Economic Wellness": "#808080",
    "Mental Wellness": "#FA005A",
    "Workplace Wellness": "#ffd700",
    "Physical Wellness": "#FAB478",
    "Social Wellness": "#ffa500",
    "Political Wellness": "#ffffff",
    "Environmental Wellness": "#0000FF",
    "Ecological Diversity": "#00FF00",
    "Health": "#FF0000",
    "Good Governance": "#000000",
    "Education Value": "#8b4513",
    "Living Standards": "#ffff00",
    "Cultural Diversity": "#B432FF",
}

WORD_MODES = ["Matrice1", "Matrice", "English", "GNH Indicators"]
MAX_COLORS = 8

# -------------------- loaders --------------------
def _find_col(df: pd.DataFrame, candidates: List[str]) -> str | None:
    names = {c.lower(): c for c in df.columns}
    for c in candidates:
        if c.lower() in names: return names[c.lower()]
    for want in candidates:
        ww = want.replace(" ", "").replace("-", "")
        for lc, orig in names.items():
            if ww in lc.replace(" ", "").replace("-", ""):
                return orig
    return None

def load_pathway_info(csv_path_plus: str):
    df = pd.read_csv(csv_path_plus)
    keys = set(SEQUENCE_ALIASES.values())
    rows = df[df["color"].astype(str).str.lower().isin(keys)].copy()

    seq_to_colors: Dict[str, List[str]] = {}
    seq_phrase: Dict[str, str] = {}

    # colors live in 'r' (list), template = concat of the other fields
    cols_for_phrase = [c for c in df.columns if c not in ("color", "r", "g", "b")]
    for _, row in rows.iterrows():
        key = str(row["color"]).strip().lower()
        color_list = str(row.get("r", "") or "")
        colors = [c.strip().lower() for c in re.split(r"[,\s]+", color_list) if c.strip()]
        seq_to_colors[key] = list(dict.fromkeys(colors))

        vals = []
        for c in cols_for_phrase:
            v = row.get(c)
            if pd.notna(v):
                s = str(v).strip()
                if s and s.lower() != "nan":
                    vals.append(s)
        phrase = " ".join(" ".join(vals).split())  # base template
        seq_phrase[key] = phrase

    return seq_to_colors, seq_phrase

def _split_words(s: str) -> List[str]:
    if not isinstance(s, str): return []
    parts = re.split(r"[,\;/\|\s]+", s.strip())
    return [p for p in (w.strip().lower() for w in parts) if p]

def load_color_lexicon(csv_path_color: str):
    df = pd.read_csv(csv_path_color)
    color_col = _find_col(df, ["color", "colour"])
    m1_col = _find_col(df, ["matrice1", "matrice 1"])
    m_col  = _find_col(df, ["matrice"])
    en_col = _find_col(df, ["english-words-code", "english words code", "english_words_code", "english"])

    lex: Dict[str, Dict[str, List[str]]] = {}
    for _, row in df.iterrows():
        cname = str(row.get(color_col, "")).strip().lower()
        if not cname: continue
        lex[cname] = {
            "matrice1": _split_words(str(row.get(m1_col, ""))),
            "matrice":  _split_words(str(row.get(m_col,  ""))),
            "english":  _split_words(str(row.get(en_col, ""))),
        }
    return lex

SEQ_TO_COLORS, SEQ_PHRASE = load_pathway_info(CSV_PATH_PLUS)
COLOR_LEX = load_color_lexicon(CSV_PATH_COLOR)

def sequence_to_image_path(seq_key: str) -> str | None:
    fname = SEQUENCE_IMAGE_FILES.get(seq_key)
    return fname if (fname and os.path.exists(fname)) else None

# -------------------- NLP helpers --------------------
def encode_text(t: str):
    return sbert_model.encode(t, convert_to_tensor=True)

def classify_emotion(text: str) -> Tuple[str, float]:
    inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True)
    with torch.no_grad():
        logits = emotion_model(**inputs).logits
        probs = F.softmax(logits, dim=1).squeeze()
    labels = emotion_model.config.id2label
    idx = int(torch.argmax(probs).item())
    return labels[idx], float(probs[idx].item())

def score_sentiment(text: str) -> float:
    out = bert_sentiment(text[:512])[0]
    label, score = out["label"], out["score"]
    scaled = 5 + 5 * score if label == "POSITIVE" else 1 + 4 * (1 - score)
    return round(min(10, max(1, scaled)), 2)

def score_accomplishment(text: str) -> float:
    doc = nlp(text); score = 5.0
    key_phrases = {"finally","told","decided","quit","refused","stood","walked","walked away","returned","return"}
    for token in doc:
        if token.text.lower() in key_phrases: score += 1.5
        if token.tag_ in {"VBD","VBN"}:       score += 0.5
    return round(min(10, max(1, score)), 2)

def semantic_indicator_mapping(text: str, sentiment_score: float, sentiment_weight: float = 0.3) -> Dict[str, float]:
    v = encode_text(text)
    out: Dict[str, float] = {}
    for dom, desc in GNH_DOMAINS.items():
        sim = float(util.cos_sim(v, encode_text(desc)).item())
        sim = max(0.0, min(1.0, sim))
        blended = (1 - sentiment_weight) * sim + sentiment_weight * (sentiment_score / 10.0)
        out[dom] = round(blended, 3)
    return dict(sorted(out.items(), key=lambda kv: -kv[1]))

def indicators_plot(indicators: Dict[str, float]):
    labels = list(indicators.keys()); values = list(indicators.values())
    colors = [GNH_COLORS.get(label, "#cccccc") for label in labels]
    fig = plt.figure(figsize=(8,5))
    plt.barh(labels, values, color=colors)
    plt.gca().invert_yaxis()
    plt.title("GNH Indicator Similarity")
    plt.xlabel("Score")
    plt.tight_layout()
    return fig

# -------------------- prompt building (legible placeholders) --------------------
def join_all_words(color: str) -> List[str]:
    d = COLOR_LEX.get(color.lower(), {})
    return list(dict.fromkeys(d.get("matrice1", []) + d.get("matrice", []) + d.get("english", [])))

def nearest_gnh_domain_for_color(color: str) -> Tuple[str, float]:
    words = " ".join(join_all_words(color))
    if not words:
        return "Mental Wellness", 0.0
    v = encode_text(words)
    best, best_sim = None, -1.0
    for dom, desc in GNH_DOMAINS.items():
        sim = float(util.cos_sim(v, encode_text(desc)).item())
        if sim > best_sim:
            best, best_sim = dom, sim
    return best or "Mental Wellness", best_sim

def labels_for_mode(colors: List[str], mode: str) -> List[str]:
    if mode.lower().startswith("gnh"):
        return [nearest_gnh_domain_for_color(c)[0] for c in colors]
    return [c.capitalize() for c in colors]

def placeholder_for(color: str, mode: str) -> str:
    """
    Always show a meaningful placeholder driven by the chosen mode.
    """
    color_lc = color.lower()
    if mode.lower().startswith("gnh"):
        dom, _ = nearest_gnh_domain_for_color(color_lc)
        return f"{dom}: {GNH_DOMAINS.get(dom, '')}"

    # map mode -> CSV column key
    mode_key = {
        "matrice1": "matrice1",
        "matrice":  "matrice",
        "english":  "english",
    }.get(mode.lower(), "matrice")

    lex = COLOR_LEX.get(color_lc, {})
    primary = lex.get(mode_key, [])

    # If the chosen column has entries, use them.
    if primary:
        return ", ".join(primary[:12])

    # Otherwise, try the other two lexicon columns (ordered).
    fallback_order = [k for k in ("matrice1", "matrice", "english") if k != mode_key]
    for fb in fallback_order:
        words = lex.get(fb, [])
        if words:
            label = "Matrice1" if fb == "matrice1" else ("Matrice" if fb == "matrice" else "English")
            return f"(from {label}) " + ", ".join(words[:12])

    # Final fallback: mapped GNH domain description (still a “meaning”, just not from lexicon).
    dom, _ = nearest_gnh_domain_for_color(color_lc)
    return f"(mapped GNH) {dom}: {GNH_DOMAINS.get(dom, '')}"


def simple_color_legend(colors: List[str]) -> str:
    if not colors:
        return "No prompts available for this pathway."
    parts = []
    for c in colors:
        dot = f"<span style='display:inline-block;width:10px;height:10px;border-radius:50%;background:{c};margin-right:8px;border:1px solid #999;vertical-align:middle'></span>"
        parts.append(f"<div style='margin:4px 0'>{dot}<b>{c.capitalize()}</b></div>")
    return "<div>" + "".join(parts) + "</div>"

def colors_for_sequence(seq_key: str) -> List[str]:
    return SEQ_TO_COLORS.get(seq_key, [])

def update_prompt_ui(seq_choice: str, word_mode: str):
    key = SEQUENCE_ALIASES.get(seq_choice)
    colors = colors_for_sequence(key)
    labels = labels_for_mode(colors, word_mode)
    legend_html = simple_color_legend(colors)

    updates = []
    for i in range(MAX_COLORS):
        if i < len(colors):
            lab = labels[i] if i < len(labels) else f"Input {i+1}"
            ph  = placeholder_for(colors[i], word_mode)
            updates.append(gr.update(visible=True, label=f"{lab} meaning", placeholder=ph, value=""))
        else:
            updates.append(gr.update(visible=False, value="", label=f"Input {i+1}", placeholder="—"))
    return (legend_html, *updates)

# -------------------- template replacement --------------------
def render_phrase_template(base_phrase: str, colors: List[str], labels: List[str], inputs: List[str]) -> str:
    """
    Replace occurrences of '<color>-pathway' (any spacing/hyphen variants) with the user's phrase for that color.
    If user left it empty, keep the label (color name or mapped GNH indicator).
    Finally, append a compact legend ' // Label: input'.
    """
    text = base_phrase or ""
    # build replacement map color -> replacement text
    rep: Dict[str, str] = {}
    for color, label, user in zip(colors, labels, inputs):
        use = user.strip() if isinstance(user, str) and user.strip() else label
        rep[color.lower()] = use

    # replace each token case-insensitively
    for color, replacement in rep.items():
        # match 'brown-pathway', 'brown pathway', 'Brown- Pathway', etc.
        pattern = re.compile(rf"\b{re.escape(color)}\s*-\s*pathway\b", re.IGNORECASE)
        text = pattern.sub(replacement, text)

    # if the template had no tokens, fall back to readable construction:
    # "use A to B the C of D as a new E" is preserved, but we still append meanings
    suffix_parts = []
    for color, label, user in zip(colors, labels, inputs):
        if isinstance(user, str) and user.strip():
            suffix_parts.append(f"{label}: {user.strip()}")
    if suffix_parts:
        text = (text + " // " + " // ".join(suffix_parts)).strip()

    return text

# -------------------- main analysis --------------------
def analyze(text: str, seq_choice: str, word_mode: str, *color_inputs):
    key = SEQUENCE_ALIASES.get(seq_choice)
    if key not in SEQ_PHRASE:
        return (5.0, "neutral (0.0)", 5.0, "Choose a valid pathway.", "{}", None, None, f"{seq_choice} (unavailable)",
                *update_prompt_ui(seq_choice, word_mode))

    colors = colors_for_sequence(key)
    labels = labels_for_mode(colors, word_mode)
    base_phrase = SEQ_PHRASE.get(key, "")

    # updated phrase with template replacement
    user_inputs = list(color_inputs)[:len(colors)]
    updated_phrase = render_phrase_template(base_phrase, colors, labels, user_inputs)

    # analysis on original + updated
    combined_text = " ".join([t for t in [text, updated_phrase] if t and t.strip()])
    sentiment = score_sentiment(combined_text)
    emotion, emo_conf = classify_emotion(combined_text)
    accomplishment = score_accomplishment(combined_text)

    indicators = semantic_indicator_mapping(combined_text, sentiment_score=sentiment)
    fig = indicators_plot(indicators)
    top5 = list(indicators.items())[:5]
    top5_str = "\n".join(f"{k}: {v}" for k, v in top5)

    img_path = sequence_to_image_path(key)
    meta = f"{key} | colors: {', '.join(colors) if colors else '—'}"
    emo_str = f"{emotion} ({emo_conf:.3f})"

    # keep prompt area synced
    prompt_updates = update_prompt_ui(seq_choice, word_mode)

    return (
        sentiment, emo_str, accomplishment,
        updated_phrase, top5_str, fig, img_path, meta,
        *prompt_updates
    )

# -------------------- UI --------------------
SEQ_CHOICES = list(SEQUENCE_ALIASES.keys())
DEFAULT_SEQ = "Knot" if "Knot" in SEQ_CHOICES else SEQ_CHOICES[0]

with gr.Blocks(title="RGB Root Matriz Color Plotter") as demo:
    gr.Markdown("## RGB Root Matriz Color Plotter\n"
                "Type a phrase. Choose a **Sequence**. "
                "You’ll get sentiment, emotion, accomplishment, GNH bars, and the pathway phrase + image from the dataset.")

    with gr.Row():
        inp = gr.Textbox(lines=4, label="Your situation / obstacle", placeholder="Describe the situation...")

    with gr.Row():
        seq = gr.Dropdown(choices=SEQ_CHOICES, value=DEFAULT_SEQ, label="Pathway")
        word_mode = gr.Radio(choices=WORD_MODES, value="Matrice", label="Word Mode")

    legend = gr.HTML()

    color_boxes: List[gr.Textbox] = []
    for i in range(MAX_COLORS):
        color_boxes.append(gr.Textbox(visible=False, label=f"Input {i+1}", placeholder="—"))

    run = gr.Button("Generate Pathway Analysis", variant="primary")

    with gr.Row():
        sent = gr.Number(label="Sentiment (1–10)")
        emo  = gr.Text(label="Emotion")
        acc  = gr.Number(label="Accomplishment (1–10)")

    with gr.Row():
        phrase_out = gr.Text(label="Updated Pathway Phrase (template with your meanings)")
        gnh_top    = gr.Text(label="Top GNH Indicators (Top 5)")

    gnh_plot = gr.Plot(label="GNH Similarity")
    img_out  = gr.Image(label="Pathway image", type="filepath")
    meta_out = gr.Text(label="Chosen pathway / colors")

    def _update_ui(seq_choice, mode):
        return update_prompt_ui(seq_choice, mode)

    seq.change(fn=_update_ui, inputs=[seq, word_mode], outputs=[legend, *color_boxes])
    word_mode.change(fn=_update_ui, inputs=[seq, word_mode], outputs=[legend, *color_boxes])

    run.click(
        fn=analyze,
        inputs=[inp, seq, word_mode, *color_boxes],
        outputs=[sent, emo, acc, phrase_out, gnh_top, gnh_plot, img_out, meta_out, legend, *color_boxes],
    )

    demo.load(fn=_update_ui, inputs=[seq, word_mode], outputs=[legend, *color_boxes])

if __name__ == "__main__":
    demo.launch()