File size: 1,282 Bytes
e8746a9
 
e781192
 
7cff964
 
e781192
 
b18e629
e781192
 
 
 
 
 
 
 
 
 
 
 
e8746a9
 
5353b15
e8746a9
 
 
 
 
 
 
 
 
 
2a867e9
e8746a9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from fastai.vision.all import *
import gradio as gr
import torch
from diffusers import FluxPipeline
from huggingface_hub import login
login()

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
#pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power

prompt = "A cat holding a sign that says hello world"
image = pipe(
    prompt,
    height=1024,
    width=1024,
    guidance_scale=3.5,
    num_inference_steps=50,
    max_sequence_length=512,
    generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save("flux-dev.png")


learn = load_learner('export.pkl')

categories = ('balsamroot', 'bladderpod', 'blazing star', 'bristlecone pine flowers', 'brittlebrush')
def classify_image(img):
    pred, idx, probs = learn.predict(img)
    return dict(zip(categories, map(float, probs)))



image=gr.Image(height = 192, width = 192)
label = gr.Label()
examples = ['https://www.deserthorizonnursery.com/wp-content/uploads/2024/03/Brittlebush-Encelia-Farinosa-desert-horizon-nursery.jpg','https://cdn.mos.cms.futurecdn.net/VJE7gSuQ9KWbkqEsWgX5zS.jpg']
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
intf.launch(inline=False)