Test / api /ltx /ltx_utils.py
eeuuia's picture
Update api/ltx/ltx_utils.py
febdd12 verified
raw
history blame
7.84 kB
# FILE: api/ltx/ltx_utils.py
# DESCRIPTION: Comprehensive, self-contained utility module for the LTX pipeline.
# Handles dependency path injection, model loading, pipeline creation, and tensor preparation.
import os
import random
import json
import time
import sys
from pathlib import Path
from typing import Dict, Optional, Tuple, Union
from huggingface_hub import hf_hub_download
import numpy as np
import torch
import torchvision.transforms.functional as TVF
from PIL import Image
from safetensors import safe_open
from transformers import T5EncoderModel, T5Tokenizer
import logging
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging as ll
ll.set_verbosity_error()
ll.set_verbosity_warning()
ll.set_verbosity_info()
from utils.debug_utils import log_function_io
ll.set_verbosity_debug()
# ==============================================================================
# --- CRITICAL: DEPENDENCY PATH INJECTION ---
# ==============================================================================
# Define o caminho para o repositório clonado
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
LTX_REPO_ID = "Lightricks/LTX-Video"
CACHE_DIR = os.environ.get("HF_HOME")
# ==============================================================================
# --- IMPORTAÇÕES DA BIBLIOTECA LTX-VIDEO (Após configuração do path) ---
# ==============================================================================
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
sys.path.insert(0, repo_path)
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.schedulers.rf import RectifiedFlowScheduler
import ltx_video.pipelines.crf_compressor as crf_compressor
# ==============================================================================
# --- FUNÇÕES DE CONSTRUÇÃO DE MODELO E PIPELINE ---
# ==============================================================================
@log_function_io
def create_latent_upsampler(latent_upsampler_model_path: str, device: str) -> LatentUpsampler:
"""Loads the Latent Upsampler model from a checkpoint path."""
logging.info(f"Loading Latent Upsampler from: {latent_upsampler_model_path} to device: {device}")
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
latent_upsampler.to(device)
latent_upsampler.eval()
return latent_upsampler
@log_function_io
def build_ltx_pipeline_on_cpu(config: Dict) -> Tuple[LTXVideoPipeline, Optional[torch.nn.Module]]:
"""Builds the complete LTX pipeline and upsampler on the CPU."""
t0 = time.perf_counter()
logging.info("Building LTX pipeline on CPU...")
ckpt_path_str = hf_hub_download(repo_id=LTX_REPO_ID, filename=config["checkpoint_path"], cache_dir=CACHE_DIR)
ckpt_path = Path(ckpt_path_str)
if not ckpt_path.is_file():
raise FileNotFoundError(f"Main checkpoint file not found: {ckpt_path}")
with safe_open(ckpt_path, framework="pt") as f:
metadata = f.metadata() or {}
config_str = metadata.get("config", "{}")
configs = json.loads(config_str)
allowed_inference_steps = configs.get("allowed_inference_steps")
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path).to("cpu")
transformer = Transformer3DModel.from_pretrained(ckpt_path).to("cpu")
scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
text_encoder_path = config["text_encoder_model_name_or_path"]
text_encoder = T5EncoderModel.from_pretrained(text_encoder_path, subfolder="text_encoder").to("cpu")
tokenizer = T5Tokenizer.from_pretrained(text_encoder_path, subfolder="tokenizer")
patchifier = SymmetricPatchifier(patch_size=1)
precision = config.get("precision", "bfloat16")
if precision == "bfloat16":
vae.to(torch.bfloat16)
transformer.to(torch.bfloat16)
text_encoder.to(torch.bfloat16)
pipeline = LTXVideoPipeline(
transformer=transformer, patchifier=patchifier, text_encoder=text_encoder,
tokenizer=tokenizer, scheduler=scheduler, vae=vae,
allowed_inference_steps=allowed_inference_steps,
prompt_enhancer_image_caption_model=None, prompt_enhancer_image_caption_processor=None,
prompt_enhancer_llm_model=None, prompt_enhancer_llm_tokenizer=None,
)
latent_upsampler = None
if config.get("spatial_upscaler_model_path"):
spatial_path_str = hf_hub_download(repo_id=LTX_REPO_ID, filename=config["spatial_upscaler_model_path"], cache_dir=CACHE_DIR)
spatial_path = Path(spatial_path_str)
if not ckpt_path.is_file():
raise FileNotFoundError(f"Main checkpoint file not found: {spatial_path}")
latent_upsampler = create_latent_upsampler(spatial_path, device="cpu")
if precision == "bfloat16":
latent_upsampler.to(torch.bfloat16)
logging.info(f"LTX pipeline built on CPU in {time.perf_counter() - t0:.2f}s")
return pipeline, latent_upsampler
# ==============================================================================
# --- FUNÇÕES AUXILIARES (Seed, Preparação de Imagem) ---
# ==============================================================================
@log_function_io
def seed_everything(seed: int):
"""Sets the seed for reproducibility."""
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
@log_function_io
def load_image_to_tensor_with_resize_and_crop(
image_input: Union[str, Image.Image],
target_height: int,
target_width: int,
) -> torch.Tensor:
"""Loads and processes an image into a 5D pixel tensor compatible with the LTX pipeline."""
if isinstance(image_input, str):
image = Image.open(image_input).convert("RGB")
elif isinstance(image_input, Image.Image):
image = image_input
else:
raise ValueError("image_input must be a file path or a PIL Image object")
input_width, input_height = image.size
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = input_width / input_height
if aspect_ratio_frame > aspect_ratio_target:
new_width, new_height = int(input_height * aspect_ratio_target), input_height
x_start, y_start = (input_width - new_width) // 2, 0
else:
new_width, new_height = input_width, int(input_width / aspect_ratio_target)
x_start, y_start = 0, (input_height - new_height) // 2
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)
frame_tensor = TVF.to_tensor(image) # PIL -> tensor (C, H, W) in [0, 1] range
frame_tensor = TVF.gaussian_blur(frame_tensor, kernel_size=(3, 3))
frame_tensor_hwc = frame_tensor.permute(1, 2, 0)
frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
frame_tensor = frame_tensor_hwc.permute(2, 0, 1)
# Normalize to [-1, 1] range, which the VAE expects for encoding
frame_tensor = (frame_tensor * 2.0) - 1.0
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
return frame_tensor.unsqueeze(0).unsqueeze(2)