File size: 7,841 Bytes
9185209
b42e494
 
db85898
9185209
 
db85898
206971d
b42e494
9185209
db85898
b42e494
1c4fd91
b42e494
9a6b3d7
b42e494
 
2f3144c
0d5ddf4
db85898
f18c91b
206971d
 
 
 
f18c91b
 
 
 
febdd12
 
f18c91b
 
206971d
db85898
b42e494
db85898
 
b42e494
9185209
0d8f151
 
9185209
a5cbce5
b42e494
9a6b3d7
a7e6912
 
 
 
9a6b3d7
b42e494
9a6b3d7
 
 
 
b42e494
9a6b3d7
 
b42e494
9a6b3d7
 
febdd12
b42e494
 
 
 
 
 
 
9a6b3d7
febdd12
b42e494
 
 
 
9a6b3d7
80792cf
 
b42e494
 
80792cf
b42e494
9a6b3d7
 
b42e494
 
9a6b3d7
b42e494
 
 
9a6b3d7
b42e494
 
 
9a6b3d7
 
b42e494
9a6b3d7
 
b42e494
 
 
9a6b3d7
b42e494
 
9a6b3d7
b42e494
 
9a6b3d7
b42e494
77294b1
5ba240b
 
 
 
 
77294b1
 
 
b42e494
 
77294b1
b42e494
9a6b3d7
b42e494
a5cbce5
 
febdd12
a5cbce5
b42e494
a5cbce5
 
 
 
 
 
b42e494
 
febdd12
a5cbce5
 
 
 
 
b42e494
a5cbce5
 
 
b42e494
a5cbce5
 
 
 
 
 
 
 
 
b42e494
a5cbce5
b42e494
 
 
 
a5cbce5
b42e494
 
 
a5cbce5
b42e494
 
 
 
9a6b3d7
b42e494
 
d6edb59
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# FILE: api/ltx/ltx_utils.py
# DESCRIPTION: Comprehensive, self-contained utility module for the LTX pipeline.
# Handles dependency path injection, model loading, pipeline creation, and tensor preparation.

import os
import random
import json

import time
import sys
from pathlib import Path
from typing import Dict, Optional, Tuple, Union
from huggingface_hub import hf_hub_download
import numpy as np
import torch
import torchvision.transforms.functional as TVF
from PIL import Image
from safetensors import safe_open
from transformers import T5EncoderModel, T5Tokenizer

import logging
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging as ll
ll.set_verbosity_error()
ll.set_verbosity_warning()
ll.set_verbosity_info()
from utils.debug_utils import log_function_io

ll.set_verbosity_debug()


# ==============================================================================
# --- CRITICAL: DEPENDENCY PATH INJECTION ---
# ==============================================================================

# Define o caminho para o repositório clonado
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
LTX_REPO_ID = "Lightricks/LTX-Video"
CACHE_DIR = os.environ.get("HF_HOME")

# ==============================================================================
# --- IMPORTAÇÕES DA BIBLIOTECA LTX-VIDEO (Após configuração do path) ---
# ==============================================================================

repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
    sys.path.insert(0, repo_path)
    from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
    from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
    from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
    from ltx_video.models.transformers.transformer3d import Transformer3DModel
    from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
    from ltx_video.schedulers.rf import RectifiedFlowScheduler
    import ltx_video.pipelines.crf_compressor as crf_compressor

# ==============================================================================
# --- FUNÇÕES DE CONSTRUÇÃO DE MODELO E PIPELINE ---
# ==============================================================================

@log_function_io
def create_latent_upsampler(latent_upsampler_model_path: str, device: str) -> LatentUpsampler:
    """Loads the Latent Upsampler model from a checkpoint path."""
    logging.info(f"Loading Latent Upsampler from: {latent_upsampler_model_path} to device: {device}")
    latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
    latent_upsampler.to(device)
    latent_upsampler.eval()
    return latent_upsampler

@log_function_io
def build_ltx_pipeline_on_cpu(config: Dict) -> Tuple[LTXVideoPipeline, Optional[torch.nn.Module]]:
    """Builds the complete LTX pipeline and upsampler on the CPU."""
    t0 = time.perf_counter()
    logging.info("Building LTX pipeline on CPU...")

    ckpt_path_str = hf_hub_download(repo_id=LTX_REPO_ID, filename=config["checkpoint_path"], cache_dir=CACHE_DIR)
    ckpt_path = Path(ckpt_path_str)
    if not ckpt_path.is_file():
        raise FileNotFoundError(f"Main checkpoint file not found: {ckpt_path}")
  
    with safe_open(ckpt_path, framework="pt") as f:
        metadata = f.metadata() or {}
        config_str = metadata.get("config", "{}")
        configs = json.loads(config_str)
        allowed_inference_steps = configs.get("allowed_inference_steps")

    vae = CausalVideoAutoencoder.from_pretrained(ckpt_path).to("cpu")
    transformer = Transformer3DModel.from_pretrained(ckpt_path).to("cpu")
    scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
    
    text_encoder_path = config["text_encoder_model_name_or_path"]
    text_encoder = T5EncoderModel.from_pretrained(text_encoder_path, subfolder="text_encoder").to("cpu")
    tokenizer = T5Tokenizer.from_pretrained(text_encoder_path, subfolder="tokenizer")
    patchifier = SymmetricPatchifier(patch_size=1)

    precision = config.get("precision", "bfloat16")
    if precision == "bfloat16":
        vae.to(torch.bfloat16)
        transformer.to(torch.bfloat16)
        text_encoder.to(torch.bfloat16)
    
    pipeline = LTXVideoPipeline(
        transformer=transformer, patchifier=patchifier, text_encoder=text_encoder,
        tokenizer=tokenizer, scheduler=scheduler, vae=vae,
        allowed_inference_steps=allowed_inference_steps,
        prompt_enhancer_image_caption_model=None, prompt_enhancer_image_caption_processor=None,
        prompt_enhancer_llm_model=None, prompt_enhancer_llm_tokenizer=None,
    )

    latent_upsampler = None
    if config.get("spatial_upscaler_model_path"):  
        spatial_path_str = hf_hub_download(repo_id=LTX_REPO_ID, filename=config["spatial_upscaler_model_path"], cache_dir=CACHE_DIR)
        spatial_path = Path(spatial_path_str)
        if not ckpt_path.is_file():
            raise FileNotFoundError(f"Main checkpoint file not found: {spatial_path}")
        latent_upsampler = create_latent_upsampler(spatial_path, device="cpu")
        if precision == "bfloat16":
            latent_upsampler.to(torch.bfloat16)

    logging.info(f"LTX pipeline built on CPU in {time.perf_counter() - t0:.2f}s")
    return pipeline, latent_upsampler

# ==============================================================================
# --- FUNÇÕES AUXILIARES (Seed, Preparação de Imagem) ---
# ==============================================================================

@log_function_io
def seed_everything(seed: int):
    """Sets the seed for reproducibility."""
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

@log_function_io
def load_image_to_tensor_with_resize_and_crop(
    image_input: Union[str, Image.Image],
    target_height: int,
    target_width: int,
) -> torch.Tensor:
    """Loads and processes an image into a 5D pixel tensor compatible with the LTX pipeline."""
    if isinstance(image_input, str):
        image = Image.open(image_input).convert("RGB")
    elif isinstance(image_input, Image.Image):
        image = image_input
    else:
        raise ValueError("image_input must be a file path or a PIL Image object")

    input_width, input_height = image.size
    aspect_ratio_target = target_width / target_height
    aspect_ratio_frame = input_width / input_height

    if aspect_ratio_frame > aspect_ratio_target:
        new_width, new_height = int(input_height * aspect_ratio_target), input_height
        x_start, y_start = (input_width - new_width) // 2, 0
    else:
        new_width, new_height = input_width, int(input_width / aspect_ratio_target)
        x_start, y_start = 0, (input_height - new_height) // 2

    image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
    image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)

    frame_tensor = TVF.to_tensor(image)  # PIL -> tensor (C, H, W) in [0, 1] range
    frame_tensor = TVF.gaussian_blur(frame_tensor, kernel_size=(3, 3))
    
    frame_tensor_hwc = frame_tensor.permute(1, 2, 0)
    frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
    frame_tensor = frame_tensor_hwc.permute(2, 0, 1)
    # Normalize to [-1, 1] range, which the VAE expects for encoding
    frame_tensor = (frame_tensor * 2.0) - 1.0
    
    # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
    return frame_tensor.unsqueeze(0).unsqueeze(2)