File size: 46,952 Bytes
fd4abdb e27a641 fd4abdb 953982d fd4abdb bc04cfa fd4abdb 953982d fd4abdb e27a641 a073a96 e27a641 fd4abdb 7d27b48 6f8a8f1 fd4abdb b6a9c29 fd4abdb f7c3f47 fd4abdb e38baeb fd4abdb f182179 6a5650a 3bb53ba 878bf0f 3bb53ba 6a5650a 0bde19b 06d1678 3bb53ba fd4abdb 3bb53ba fd4abdb 00e30d0 fd4abdb e38baeb fd4abdb f7c3f47 fd4abdb 953982d fd4abdb f7c3f47 fd4abdb f7c3f47 fd4abdb f7c3f47 fd4abdb 953982d fd4abdb 953982d fd4abdb 953982d fd4abdb 953982d fd4abdb bc04cfa fd4abdb 953982d fd4abdb 4ed8366 953982d fd4abdb bc04cfa fd4abdb bc04cfa 1bca9d1 fd4abdb 41cc1e8 fd4abdb a0b1321 8619325 fd4abdb 953982d 23810ec 953982d bc04cfa a638401 953982d a638401 23810ec 953982d 82b2143 953982d 5577a09 878bf0f 4082610 5577a09 4082610 23810ec 4082610 5577a09 4082610 23810ec 5577a09 23810ec 5577a09 23810ec 31ca3d5 cc030e3 4082610 8619325 31ca3d5 23810ec 5577a09 cc030e3 5577a09 953982d 5577a09 4082610 0bde19b 953982d 23810ec 953982d 0bde19b 23810ec 0bde19b 23810ec 953982d 5577a09 0bde19b 953982d fd4abdb ed9c16e e27a641 953982d 4ed8366 ed9c16e e27a641 ed9c16e 4ed8366 ed9c16e 4ed8366 23810ec ed9c16e 4ed8366 1bca9d1 4ed8366 fd4abdb 4ed8366 fd4abdb 4ed8366 fd4abdb 4ed8366 fd4abdb 4ed8366 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 |
# ltx_server.py — VideoService (beta 1.1)
# Sempre output_type="latent"; no final: VAE (bloco inteiro) → pixels → MP4.
# Ignora UserWarning/FutureWarning e injeta VAE no manager com dtype/device corretos.
# --- 0. WARNINGS E AMBIENTE ---
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging, hf_hub_download
logging.set_verbosity_error()
logging.set_verbosity_warning()
logging.set_verbosity_info()
logging.set_verbosity_debug()
LTXV_DEBUG=1
LTXV_FRAME_LOG_EVERY=8
# --- 1. IMPORTAÇÕES ---
import os, subprocess, shlex, tempfile
import torch
import json
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess
import gc
import shutil
import contextlib
import time
import traceback
from einops import rearrange
import torch.nn.functional as F
# Singletons (versões simples)
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
try:
import psutil
import pynvml as nvml
nvml.nvmlInit()
handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
try:
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
except Exception:
procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
results = []
for p in procs:
pid = int(p.pid)
used_mb = None
try:
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
except Exception:
used_mb = None
name = "unknown"
user = "unknown"
try:
import psutil
pr = psutil.Process(pid)
name = pr.name()
user = pr.username()
except Exception:
pass
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
nvml.nvmlShutdown()
return results
except Exception:
return []
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
try:
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
except Exception:
return []
results = []
for line in out.strip().splitlines():
parts = [p.strip() for p in line.split(",")]
if len(parts) >= 3:
try:
pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2])
user = "unknown"
try:
import psutil
pr = psutil.Process(pid)
user = pr.username()
except Exception:
pass
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
except Exception:
continue
return results
def calculate_new_dimensions(orig_w, orig_h, divisor=8):
"""
Calcula novas dimensões mantendo a proporção, garantindo que ambos os
lados sejam divisíveis pelo divisor especificado (padrão 8).
"""
if orig_w == 0 or orig_h == 0:
# Retorna um valor padrão seguro
return 512, 512
# Preserva a orientação (paisagem vs. retrato)
if orig_w >= orig_h:
# Paisagem ou quadrado
aspect_ratio = orig_w / orig_h
# Começa com uma altura base e calcula a largura
new_h = 512 # Altura base para paisagem
new_w = new_h * aspect_ratio
else:
# Retrato
aspect_ratio = orig_h / orig_w
# Começa com uma largura base e calcula a altura
new_w = 512 # Largura base para retrato
new_h = new_w * aspect_ratio
# Arredonda AMBOS os valores para o múltiplo mais próximo do divisor
final_w = int(round(new_w / divisor)) * divisor
final_h = int(round(new_h / divisor)) * divisor
# Garante que as dimensões não sejam zero após o arredondamento
final_w = max(divisor, final_w)
final_h = max(divisor, final_h)
print(f"[Dimension Calc] Original: {orig_w}x{orig_h} -> Calculado: {new_w:.0f}x{new_h:.0f} -> Final (divisível por {divisor}): {final_w}x{final_h}")
return final_h, final_w # Retorna (altura, largura)
def handle_media_upload_for_dims(filepath, current_h, current_w):
"""
Esta função agora usará o novo cálculo robusto.
(O corpo desta função não precisa de alterações, pois ela já chama a função de cálculo)
"""
if not filepath or not os.path.exists(str(filepath)):
return gr.update(value=current_h), gr.update(value=current_w)
try:
if str(filepath).lower().endswith(('.png', '.jpg', '.jpeg', '.webp')):
with Image.open(filepath) as img:
orig_w, orig_h = img.size
else: # Assumir que é um vídeo
with imageio.get_reader(filepath) as reader:
meta = reader.get_meta_data()
orig_w, orig_h = meta.get('size', (current_w, current_h))
# Chama a nova função corrigida
new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
print(f"Erro ao processar mídia para dimensões: {e}")
return gr.update(value=current_h), gr.update(value=current_w)
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
if not processes:
return " - Processos ativos: (nenhum)\n"
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"]
for p in processes:
star = "*" if p["pid"] == current_pid else " "
used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
return "\n".join(lines) + "\n"
def run_setup():
setup_script_path = "setup.py"
if not os.path.exists(setup_script_path):
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
return
try:
print("[DEBUG] Executando setup.py para dependências...")
subprocess.run([sys.executable, setup_script_path], check=True)
print("[DEBUG] Setup concluído com sucesso.")
except subprocess.CalledProcessError as e:
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
sys.exit(1)
from api.ltx.inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
calculate_padding,
load_media_file,
)
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
if not LTX_VIDEO_REPO_DIR.exists():
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
run_setup()
def add_deps_to_path():
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, repo_path)
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
add_deps_to_path()
# --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
# --- 4. FUNÇÕES HELPER DE LOG ---
def log_tensor_info(tensor, name="Tensor"):
if not isinstance(tensor, torch.Tensor):
print(f"\n[INFO] '{name}' não é tensor.")
return
print(f"\n--- Tensor: {name} ---")
print(f" - Shape: {tuple(tensor.shape)}")
print(f" - Dtype: {tensor.dtype}")
print(f" - Device: {tensor.device}")
if tensor.numel() > 0:
try:
print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}")
except Exception:
pass
print("------------------------------------------\n")
# --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
class VideoService:
def __init__(self):
t0 = time.perf_counter()
print("[DEBUG] Inicializando VideoService...")
self.debug = os.getenv("LTXV_DEBUG", "1") == "1"
self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
self.config = self._load_config()
print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[DEBUG] Device selecionado: {self.device}")
self.last_memory_reserved_mb = 0.0
self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = []
self.pipeline, self.latent_upsampler = self._load_models()
print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}")
print(f"[DEBUG] Movendo modelos para {self.device}...")
self.pipeline.to(self.device)
if self.latent_upsampler:
self.latent_upsampler.to(self.device)
self._apply_precision_policy()
print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}")
# Injeta pipeline/vae no manager (impede vae=None)
vae_manager_singleton.attach_pipeline(
self.pipeline,
device=self.device,
autocast_dtype=self.runtime_autocast_dtype
)
print(f"[DEBUG] VAE manager conectado: has_vae={hasattr(self.pipeline, 'vae')} device={self.device}")
if self.device == "cuda":
torch.cuda.empty_cache()
self._log_gpu_memory("Após carregar modelos")
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
def _log_gpu_memory(self, stage_name: str):
if self.device != "cuda":
return
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
current_reserved_b = torch.cuda.memory_reserved(device_index)
current_reserved_mb = current_reserved_b / (1024 ** 2)
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
total_memory_mb = total_memory_b / (1024 ** 2)
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index)
print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---")
print(f" - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB (Δ={delta_mb:+.2f} MB)")
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
print(f" - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB")
print(_gpu_process_table(processes, os.getpid()), end="")
print("--------------------------------------------------\n")
self.last_memory_reserved_mb = current_reserved_mb
def _register_tmp_dir(self, d: str):
if d and os.path.isdir(d):
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
def _register_tmp_file(self, f: str):
if f and os.path.exists(f):
self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}")
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
print("[DEBUG] Finalize: iniciando limpeza...")
keep = set(keep_paths or []); extras = set(extra_paths or [])
removed_files = 0
for f in list(self._tmp_files | extras):
try:
if f not in keep and os.path.isfile(f):
os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}")
except Exception as e:
print(f"[DEBUG] Falha removendo arquivo {f}: {e}")
finally:
self._tmp_files.discard(f)
removed_dirs = 0
for d in list(self._tmp_dirs):
try:
if d not in keep and os.path.isdir(d):
shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}")
except Exception as e:
print(f"[DEBUG] Falha removendo diretório {d}: {e}")
finally:
self._tmp_dirs.discard(d)
print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}")
gc.collect()
try:
if clear_gpu and torch.cuda.is_available():
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
except Exception as e:
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
try:
self._log_gpu_memory("Após finalize")
except Exception as e:
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")
def _load_config(self):
base = LTX_VIDEO_REPO_DIR / "configs"
candidates = [
base / "ltxv-13b-0.9.8-dev-fp8.yaml",
base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
base / "ltxv-13b-0.9.8-distilled.yaml",
]
for cfg in candidates:
if cfg.exists():
print(f"[DEBUG] Config selecionada: {cfg}")
with open(cfg, "r") as file:
return yaml.safe_load(file)
cfg = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
print(f"[DEBUG] Config fallback: {cfg}")
with open(cfg, "r") as file:
return yaml.safe_load(file)
def _load_models(self):
"""
Carrega os modelos de forma inteligente:
1. Tenta resolver o caminho do cache local (rápido, sem rede).
2. Se o arquivo não for encontrado localmente, baixa como fallback.
Garante que o serviço possa iniciar mesmo que o setup.py não tenha sido executado.
"""
t0 = time.perf_counter()
LTX_REPO = "Lightricks/LTX-Video"
print("[DEBUG] Resolvendo caminhos dos modelos de forma inteligente...")
# --- Função Auxiliar para Carregamento Inteligente ---
def get_or_download_model(repo_id, filename, description):
try:
# hf_hub_download é a ferramenta certa aqui. Ela verifica o cache PRIMEIRO.
# Se o arquivo estiver no cache, retorna o caminho instantaneamente (após uma verificação rápida de metadados).
# Se não estiver no cache, ela o baixa.
print(f"[DEBUG] Verificando {description}: {filename}...")
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
# Forçar o uso de um cache específico se necessário
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN")
)
print(f"[DEBUG] Caminho do {description} resolvido com sucesso.")
return model_path
except Exception as e:
print("\n" + "="*80)
print(f"[ERRO CRÍTICO] Falha ao obter o modelo '{filename}'.")
print(f"Detalhe do erro: {e}")
print("Verifique sua conexão com a internet ou o estado do cache do Hugging Face.")
print("="*80 + "\n")
sys.exit(1)
# --- Checkpoint Principal ---
checkpoint_filename = self.config["checkpoint_path"]
distilled_model_path = get_or_download_model(
LTX_REPO, checkpoint_filename, "checkpoint principal"
)
self.config["checkpoint_path"] = distilled_model_path
# --- Upscaler Espacial ---
upscaler_filename = self.config["spatial_upscaler_model_path"]
spatial_upscaler_path = get_or_download_model(
LTX_REPO, upscaler_filename, "upscaler espacial"
)
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
# --- Construção dos Pipelines ---
print("\n[DEBUG] Construindo pipeline a partir dos caminhos resolvidos...")
pipeline = create_ltx_video_pipeline(
ckpt_path=self.config["checkpoint_path"],
precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
)
print("[DEBUG] Pipeline pronto.")
latent_upsampler = None
if self.config.get("spatial_upscaler_model_path"):
print("[DEBUG] Construindo latent_upsampler...")
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
print("[DEBUG] Upsampler pronto.")
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
return pipeline, latent_upsampler
def _load_models_old(self):
t0 = time.perf_counter()
LTX_REPO = "Lightricks/LTX-Video"
print("[DEBUG] Baixando checkpoint principal...")
distilled_model_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["checkpoint_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN"),
)
self.config["checkpoint_path"] = distilled_model_path
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
print("[DEBUG] Baixando upscaler espacial...")
spatial_upscaler_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["spatial_upscaler_model_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN")
)
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
print("[DEBUG] Construindo pipeline...")
pipeline = create_ltx_video_pipeline(
ckpt_path=self.config["checkpoint_path"],
precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
)
print("[DEBUG] Pipeline pronto.")
latent_upsampler = None
if self.config.get("spatial_upscaler_model_path"):
print("[DEBUG] Construindo latent_upsampler...")
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
print("[DEBUG] Upsampler pronto.")
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
return pipeline, latent_upsampler
def _promote_fp8_weights_to_bf16(self, module):
if not isinstance(module, torch.nn.Module):
print("[DEBUG] Promoção FP8→BF16 ignorada: alvo não é nn.Module.")
return
f8 = getattr(torch, "float8_e4m3fn", None)
if f8 is None:
print("[DEBUG] torch.float8_e4m3fn indisponível.")
return
p_cnt = b_cnt = 0
for _, p in module.named_parameters(recurse=True):
try:
if p.dtype == f8:
with torch.no_grad():
p.data = p.data.to(torch.bfloat16); p_cnt += 1
except Exception:
pass
for _, b in module.named_buffers(recurse=True):
try:
if hasattr(b, "dtype") and b.dtype == f8:
b.data = b.data.to(torch.bfloat16); b_cnt += 1
except Exception:
pass
print(f"[DEBUG] FP8→BF16: params_promoted={p_cnt}, buffers_promoted={b_cnt}")
@torch.no_grad()
def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
"""
Lógica extraída diretamente da LTXMultiScalePipeline para upscale de latentes.
"""
if not self.latent_upsampler:
raise ValueError("Latent Upsampler não está carregado.")
# Garante que os modelos estejam no dispositivo correto
self.latent_upsampler.to(self.device)
self.pipeline.vae.to(self.device)
print(f"[DEBUG-UPSAMPLE] Shape de entrada: {tuple(latents.shape)}")
latents = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
upsampled_latents = self.latent_upsampler(latents)
upsampled_latents = normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
print(f"[DEBUG-UPSAMPLE] Shape de saída: {tuple(upsampled_latents.shape)}")
return upsampled_latents
def _apply_precision_policy(self):
prec = str(self.config.get("precision", "")).lower()
self.runtime_autocast_dtype = torch.float32
print(f"[DEBUG] Aplicando política de precisão: {prec}")
if prec == "float8_e4m3fn":
self.runtime_autocast_dtype = torch.bfloat16
force_promote = os.getenv("LTXV_FORCE_BF16_ON_FP8", "0") == "1"
print(f"[DEBUG] FP8 detectado. force_promote={force_promote}")
if force_promote and hasattr(torch, "float8_e4m3fn"):
try:
self._promote_fp8_weights_to_bf16(self.pipeline)
except Exception as e:
print(f"[DEBUG] Promoção FP8→BF16 na pipeline falhou: {e}")
try:
if self.latent_upsampler:
self._promote_fp8_weights_to_bf16(self.latent_upsampler)
except Exception as e:
print(f"[DEBUG] Promoção FP8→BF16 no upsampler falhou: {e}")
elif prec == "bfloat16":
self.runtime_autocast_dtype = torch.bfloat16
elif prec == "mixed_precision":
self.runtime_autocast_dtype = torch.float16
else:
self.runtime_autocast_dtype = torch.float32
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
print(f"[DEBUG] Carregando condicionamento: {filepath}")
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
tensor = torch.nn.functional.pad(tensor, padding_values)
out = tensor.to(self.device, dtype=self.runtime_autocast_dtype) if self.device == "cuda" else tensor.to(self.device)
print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}")
return out
def _dividir_latentes_por_tamanho(self, latents_brutos, num_latente_por_chunk: int, overlap: int = 1):
"""
Divide o tensor de latentes em chunks com tamanho definido em número de latentes.
Args:
latents_brutos: tensor [B, C, T, H, W]
num_latente_por_chunk: número de latentes por chunk
overlap: número de frames que se sobrepõem entre chunks
Returns:
List[tensor]: lista de chunks cloneados
"""
sum_latent = latents_brutos.shape[2]
chunks = []
if num_latente_por_chunk >= sum_latent:
return [latents_brutos]
n_chunks = (sum_latent) // num_latente_por_chunk
steps = sum_latent//n_chunks
print("==========PODA CAUSAL[start:stop-1]==========")
print(f"[DEBUG] TOTAL LATENTES = {sum_latent}")
print(f"[DEBUG] LATENTES min por chunk = {num_latente_por_chunk}")
print(f"[DEBUG] Número de chunks = {n_chunks}")
if n_chunks > 1:
i=0
while i < n_chunks:
if i>0:
dow=0
else:
dow=0
start = (num_latente_por_chunk*i)
end = (start+num_latente_por_chunk+(overlap+1))
if i+1 < n_chunks:
chunk = latents_brutos[:, :, start-(dow):end, :, :].clone().detach()
print(f"[DEBUG] chunk{i+1}[:, :, {start-dow}:{end}, :, :] = {chunk.shape[2]}")
else:
chunk = latents_brutos[:, :, start-(dow):, :, :].clone().detach()
print(f"[DEBUG] chunk{i+1}[:, :, {start-(dow)}:, :, :] = {chunk.shape[2]}")
chunks.append(chunk)
i+=1
else:
print(f"[DEBUG] numero chunks minimo ")
print(f"[DEBUG] latents_brutos[:, :, :, :, :] = {latents_brutos.shape[2]}")
chunks.append(latents_brutos)
print("\n\n================PODA CAUSAL=================")
return chunks
def _get_total_frames(self, video_path: str) -> int:
cmd = [
"ffprobe",
"-v", "error",
"-select_streams", "v:0",
"-count_frames",
"-show_entries", "stream=nb_read_frames",
"-of", "default=nokey=1:noprint_wrappers=1",
video_path
]
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
return int(result.stdout.strip())
def _gerar_lista_com_transicoes(self, pasta: str, video_paths: list[str], crossfade_frames: int = 8) -> list[str]:
"""
Gera uma nova lista de vídeos aplicando transições suaves (blend frame a frame)
seguindo exatamente a lógica linear de Carlos.
"""
import os, subprocess, shutil
poda = crossfade_frames
total_partes = len(video_paths)
video_fade_fim = None
video_fade_ini = None
nova_lista = []
if crossfade_frames == 0:
print("\n\n[DEBUG] CROSSFADE_FRAMES=0 Ship concatenation causal")
return video_paths
print("\n\n===========CONCATECAO CAUSAL=============")
print(f"[DEBUG] Iniciando pipeline com {total_partes} vídeos e {poda} frames de crossfade")
for i in range(total_partes):
base = video_paths[i]
# --- PODA ---
video_podado = os.path.join(pasta, f"{base}_podado_{i}.mp4")
if i<total_partes-1:
end_frame = self._get_total_frames(base) - poda
else:
end_frame = self._get_total_frames(base)
if i>0:
start_frame = poda
else:
start_frame = 0
cmd_fim = (
f'ffmpeg -y -hide_banner -loglevel error -i "{base}" '
f'-vf "trim=start_frame={start_frame}:end_frame={end_frame},setpts=PTS-STARTPTS" '
f'-an "{video_podado}"'
)
subprocess.run(cmd_fim, shell=True, check=True)
# --- FADE_INI ---
if i > 0:
video_fade_ini = os.path.join(pasta, f"{base}_fade_ini_{i}.mp4")
cmd_ini = (
f'ffmpeg -y -hide_banner -loglevel error -i "{base}" '
f'-vf "trim=end_frame={poda},setpts=PTS-STARTPTS" -an "{video_fade_ini}"'
)
subprocess.run(cmd_ini, shell=True, check=True)
# --- TRANSIÇÃO ---
if video_fade_fim and video_fade_ini:
video_fade = os.path.join(pasta, f"transicao_{i}_{i+1}.mp4")
cmd_blend = (
f'ffmpeg -y -hide_banner -loglevel error '
f'-i "{video_fade_fim}" -i "{video_fade_ini}" '
f'-filter_complex "[0:v][1:v]blend=all_expr=\'A*(1-T/{poda})+B*(T/{poda})\',format=yuv420p" '
f'-frames:v {poda} "{video_fade}"'
)
subprocess.run(cmd_blend, shell=True, check=True)
print(f"[DEBUG] transicao adicionada {i}/{i+1} {self._get_total_frames(video_fade)} frames ✅")
nova_lista.append(video_fade)
# --- FADE_FIM ---
if i<=total_partes-1:
video_fade_fim = os.path.join(pasta, f"{base}_fade_fim_{i}.mp4")
cmd_fim = (
f'ffmpeg -y -hide_banner -loglevel error -i "{base}" '
f'-vf "trim=start_frame={end_frame-poda},setpts=PTS-STARTPTS" -an "{video_fade_fim}"'
)
subprocess.run(cmd_fim, shell=True, check=True)
nova_lista.append(video_podado)
print(f"[DEBUG] Video podado {i+1} adicionado {self._get_total_frames(video_podado)} frames ✅")
print("===========CONCATECAO CAUSAL=============")
print(f"[DEBUG] {nova_lista}")
return nova_lista
def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str):
"""
Concatena múltiplos MP4s sem reencode usando o demuxer do ffmpeg.
ATENÇÃO: todos os arquivos precisam ter mesmo codec, fps, resolução etc.
"""
if not mp4_list or len(mp4_list) < 2:
raise ValueError("Forneça pelo menos dois arquivos MP4 para concatenar.")
# Cria lista temporária para o ffmpeg
with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt") as f:
for mp4 in mp4_list:
f.write(f"file '{os.path.abspath(mp4)}'\n")
list_path = f.name
cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}"
print(f"[DEBUG] Concat: {cmd}")
try:
subprocess.check_call(shlex.split(cmd))
finally:
try:
os.remove(list_path)
except Exception:
pass
# ==============================================================================
# --- FUNÇÃO GENERATE COMPLETA E ATUALIZADA ---
# ==============================================================================
def generate(
self,
prompt,
negative_prompt,
mode="text-to-video",
start_image_filepath=None,
middle_image_filepath=None,
middle_frame_number=None,
middle_image_weight=1.0,
end_image_filepath=None,
end_image_weight=1.0,
input_video_filepath=None,
height=512,
width=704,
duration=2.0,
frames_to_use=9,
seed=42,
randomize_seed=True,
guidance_scale=3.0,
improve_texture=True,
progress_callback=None,
external_decode=True,
):
t_all = time.perf_counter()
print(f"[DEBUG] generate() begin mode={mode} external_decode={external_decode} improve_texture={improve_texture}")
if self.device == "cuda":
torch.cuda.empty_cache(); torch.cuda.reset_peak_memory_stats()
self._log_gpu_memory("Início da Geração")
# --- Setup Inicial (como antes) ---
if mode == "image-to-video" and not start_image_filepath:
raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
seed_everething(used_seed); print(f"[DEBUG] Seed usado: {used_seed}")
FPS = 24.0; MAX_NUM_FRAMES = 2570
target_frames_rounded = round(duration * FPS)
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
height_padded = ((height - 1) // 8 + 1) * 8
width_padded = ((width - 1) // 8 + 1) * 8
padding_values = calculate_padding(height, width, height_padded, width_padded)
generator = torch.Generator(device=self.device).manual_seed(used_seed)
conditioning_items = []
if mode == "image-to-video":
start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
if middle_image_filepath and middle_frame_number is not None:
middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
if end_image_filepath:
end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
last_frame_index = actual_num_frames - 1
conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))
print(f"[DEBUG] Conditioning items: {len(conditioning_items)}")
call_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height_padded,
"width": width_padded,
"num_frames": actual_num_frames,
"frame_rate": int(FPS),
"generator": generator,
"output_type": "latent",
"conditioning_items": conditioning_items if conditioning_items else None,
"media_items": None,
"decode_timestep": self.config["decode_timestep"],
"decode_noise_scale": self.config["decode_noise_scale"],
"stochastic_sampling": self.config["stochastic_sampling"],
"image_cond_noise_scale": 0.01,
"is_video": True,
"vae_per_channel_normalize": True,
"mixed_precision": (self.config["precision"] == "mixed_precision"),
"offload_to_cpu": False,
"enhance_prompt": False,
"skip_layer_strategy": SkipLayerStrategy.AttentionValues,
}
latents = None
latents_list = []
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
try:
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
with ctx:
if improve_texture:
if not self.latent_upsampler:
raise ValueError("Upscaler espacial não carregado, mas 'improve_texture' está ativo.")
first_pass_kwargs = call_kwargs.copy()
# --- ETAPA 1: GERAÇÃO BASE (FIRST PASS) ---
print("\n--- INICIANDO ETAPA 1: GERAÇÃO BASE (FIRST PASS) ---")
t_pass1 = time.perf_counter()
first_pass_config = self.config.get("first_pass", {}).copy()
downscale_factor = self.config.get("downscale_factor", 0.6666666)
vae_scale_factor = self.pipeline.vae_scale_factor # Geralmente 8
x_width = int(width_padded * downscale_factor)
downscaled_width = x_width - (x_width % vae_scale_factor)
x_height = int(height_padded * downscale_factor)
downscaled_height = x_height - (x_height % vae_scale_factor)
print(f"[DEBUG] First Pass Dims: Original Pad ({width_padded}x{height_padded}) -> Downscaled ({downscaled_width}x{downscaled_height})")
first_pass_kwargs.update({
**first_pass_config
})
first_pass_kwargs.update({
"output_type": "latent",
"width": downscaled_width,
"height": downscaled_height,
"guidance_scale": float(guidance_scale),
})
print(f"[DEBUG] First Pass: Gerando em {downscaled_width}x{downscaled_height}...")
base_latents = self.pipeline(**first_pass_kwargs).images
log_tensor_info(base_latents, "Latentes Base (First Pass)")
print(f"[DEBUG] First Pass concluída em {time.perf_counter() - t_pass1:.2f}s")
# --- ETAPA 2: UPSCALE DOS LATENTES ---
print("\n--- INICIANDO ETAPA 2: UPSCALE DOS LATENTES ---")
t_upscale = time.perf_counter()
upsampled_latents = self._upsample_latents_internal(base_latents)
upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=base_latents)
log_tensor_info(upsampled_latents, "Latentes Pós-Upscale")
print(f"[DEBUG] Upscale de Latentes concluído em {time.perf_counter() - t_upscale:.2f}s")
del base_latents; gc.collect(); torch.cuda.empty_cache()
par = 0
latents_cpu_up = upsampled_latents.detach().to("cpu", non_blocking=True)
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
latents_parts_up = self._dividir_latentes_por_tamanho(latents_cpu_up,40,0)
print("\n\n--- INICIANDO ETAPA 3: REFINAMENTO DE TEXTURA (SECOND PASS) ---")
cc = 1
for latents in latents_parts_up:
t_pass2 = time.perf_counter()
print("\n\n#########################################")
# # --- ETAPA 3: REFINAMENTO DE TEXTURA (SECOND PASS) ---
print(f"\n--- INICIANDO ETAPA 3/{cc} ")
second_pass_kwargs = first_pass_config.copy()
second_pass_config = self.config.get("second_pass", {}).copy()
second_pass_width = downscaled_width * 2
second_pass_height = downscaled_height * 2
print(f"[DEBUG] Second Pass Dims: Target ({second_pass_width}x{second_pass_height})")
num_latent_frames_part = latents.shape[2]
log_tensor_info(latents, "Latentes input (Pre-Pós-Second Pass)")
vae_temporal_scale = self.pipeline.video_scale_factor # Geralmente 4 ou 8
num_pixel_frames_part = ((num_latent_frames_part - 1) * vae_temporal_scale) + 1
print(f"[DEBUG] Parte: {num_latent_frames_part - 1} latentes -> {num_pixel_frames_part} frames de pixel (alvo)")
second_pass_kwargs.update({
**second_pass_config
})
second_pass_kwargs.update({
"output_type": "latent",
"width": second_pass_width,
"height": second_pass_height,
"num_frames": num_pixel_frames_part,
"latents": latents, # O tensor upscaled
"guidance_scale": float(guidance_scale),
})
print(f"[DEBUG] Second Pass: Refinando em {width_padded}x{height_padded}...")
final_latents = self.pipeline(**second_pass_kwargs).images
log_tensor_info(final_latents, "Latentes Finais (Pós-Second Pass)")
print(f"[DEBUG] Second part Pass concluída em {time.perf_counter() - t_pass2:.2f}s")
latents_list.append(final_latents)
cc+=1
print("#########################################")
print("\n\n--- FIM ETAPA 3: REFINAMENTO DE TEXTURA (SECOND PASS) ---")
else: # Geração de etapa única
print("\n--- INICIANDO GERAÇÃO DE ETAPA ÚNICA ---")
t_single = time.perf_counter()
single_pass_kwargs = call_kwargs.copy()
single_pass_kwargs.update(self.config.get("first_pass", {}))
single_pass_kwargs["guidance_scale"] = float(guidance_scale)
single_pass_kwargs["output_type"] = "latent"
# Remove keys that might conflict or are not used in single pass / handled by above
single_pass_kwargs.pop("num_inference_steps", None)
single_pass_kwargs.pop("first_pass", None)
single_pass_kwargs.pop("second_pass", None)
single_pass_kwargs.pop("downscale_factor", None)
latents = self.pipeline(**single_pass_kwargs).images
log_tensor_info(latents, "Latentes Finais (Etapa Única)")
print(f"[DEBUG] Etapa única concluída em {time.perf_counter() - t_single:.2f}s")
latents_list.append(latents)
# --- ETAPA FINAL: DECODIFICAÇÃO E CODIFICAÇÃO MP4 ---
print("\n--- INICIANDO ETAPA FINAL: DECODIFICAÇÃO E MONTAGEM ---")
temp_dir = tempfile.mkdtemp(prefix="ltxv_"); self._register_tmp_dir(temp_dir)
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
partes_mp4 = []
par = 0
for latents_vae in latents_list:
latents_cpu_vae = latents_vae.detach().to("cpu", non_blocking=True)
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
latents_parts_vae = self._dividir_latentes_por_tamanho(latents_cpu_vae,4,1)
for latents in latents_parts_vae:
print(f"[DEBUG] Partição {par}: {tuple(latents.shape)}")
par = par + 1
output_video_path = os.path.join(temp_dir, f"output_{used_seed}_{par}.mp4")
final_output_path = None
print("[DEBUG] Decodificando bloco de latentes com VAE → tensor de pixels...")
# Usar manager com timestep por item; previne target_shape e rota NoneType.decode
pixel_tensor = vae_manager_singleton.decode(
latents.to(self.device, non_blocking=True),
decode_timestep=float(self.config.get("decode_timestep", 0.05))
)
log_tensor_info(pixel_tensor, "Pixel tensor (VAE saída)")
print("[DEBUG] Codificando MP4 a partir do tensor de pixels (bloco inteiro)...")
video_encode_tool_singleton.save_video_from_tensor(
pixel_tensor,
output_video_path,
fps=call_kwargs["frame_rate"],
progress_callback=progress_callback
)
candidate = os.path.join(results_dir, f"output_par_{par}.mp4")
try:
shutil.move(output_video_path, candidate)
final_output_path = candidate
print(f"[DEBUG] MP4 parte {par} movido para {final_output_path}")
partes_mp4.append(final_output_path)
except Exception as e:
final_output_path = output_video_path
print(f"[DEBUG] Falha no move; usando tmp como final: {e}")
total_partes = len(partes_mp4)
if (total_partes>1):
final_vid = os.path.join(results_dir, f"concat_fim_{used_seed}.mp4")
partes_mp4_fade = self._gerar_lista_com_transicoes(pasta=results_dir, video_paths=partes_mp4, crossfade_frames=0)
self._concat_mp4s_no_reencode(partes_mp4_fade, final_vid)
else:
final_vid = partes_mp4[0]
self._log_gpu_memory("Fim da Geração")
return final_vid, used_seed
except Exception as e:
print("[DEBUG] EXCEÇÃO NA GERAÇÃO:")
print("".join(traceback.format_exception(type(e), e, e.__traceback__)))
raise
finally:
try:
del latents
except Exception:
pass
try:
del multi_scale_pipeline
except Exception:
pass
gc.collect()
try:
if self.device == "cuda":
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
except Exception as e:
print(f"[DEBUG] Limpeza GPU no finally falhou: {e}")
try:
self.finalize(keep_paths=[])
except Exception as e:
print(f"[DEBUG] finalize() no finally falhou: {e}")
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService() |