File size: 23,442 Bytes
ac23084 1797675 ac23084 a6e974e ac23084 a6e974e ac23084 1797675 ac23084 bd507dd 33de423 ac23084 1797675 cb3f487 f0b5401 cb3f487 ac23084 1797675 ac23084 eb62b92 ac23084 1797675 ac23084 1797675 ac23084 bd507dd ac23084 1797675 ac23084 1797675 ac23084 1797675 ac23084 1797675 bd507dd 31d7902 33de423 1797675 33de423 bda9780 33de423 1797675 bd507dd 31d7902 bd507dd 31d7902 bd507dd 31d7902 bd507dd ac23084 33de423 bda9780 33de423 ac23084 1797675 ac23084 33de423 bd507dd 1797675 bd507dd 1797675 bd507dd 1797675 bd507dd 8ce4529 bd507dd 33de423 c825b23 33de423 bda9780 33de423 c825b23 33de423 bda9780 1797675 33de423 1797675 bd507dd 1797675 bd507dd 1797675 bd507dd 1797675 bd507dd 1797675 bd507dd 1797675 bd507dd 1797675 bd507dd 1797675 bd507dd 1797675 bd507dd 1797675 bd507dd 1797675 bd507dd 33de423 1797675 eec60ab 1797675 bd507dd bda9780 1797675 bda9780 1797675 bda9780 1797675 33de423 bda9780 1797675 33de423 bd507dd 7c58b95 bd507dd 1797675 bd507dd bda9780 33de423 f0b5401 bda9780 bd507dd bda9780 bd507dd 1797675 bd507dd 31d7902 bd507dd ac23084 1797675 bda9780 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
# video_service.py
# --- 1. IMPORTAÇÕES ---
import torch
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess
import gc
import shutil
import contextlib
# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
try:
import psutil
import pynvml as nvml
nvml.nvmlInit()
handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
try:
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
except Exception:
procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
results = []
for p in procs:
pid = int(p.pid)
used_mb = None
try:
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
except Exception:
used_mb = None
name = "unknown"
user = "unknown"
try:
pr = psutil.Process(pid)
name = pr.name()
user = pr.username()
except Exception:
pass
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
nvml.nvmlShutdown()
return results
except Exception:
return []
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
try:
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
except Exception:
return []
results = []
for line in out.strip().splitlines():
parts = [p.strip() for p in line.split(",")]
if len(parts) >= 3:
try:
pid = int(parts[0])
name = parts[1]
used_mb = int(parts[2])
user = "unknown"
try:
import psutil
pr = psutil.Process(pid)
user = pr.username()
except Exception:
pass
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
except Exception:
continue
return results
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
if not processes:
return " - Processos ativos: (nenhum)\n"
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"]
for p in processes:
star = "*" if p["pid"] == current_pid else " "
used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
return "\n".join(lines) + "\n"
def run_setup():
"""Executa o script setup.py para clonar as dependências necessárias."""
setup_script_path = "setup.py"
if not os.path.exists(setup_script_path):
print("AVISO: script 'setup.py' não encontrado. Pulando a clonagem de dependências.")
return
try:
print("--- Executando setup.py para garantir que as dependências estão presentes ---")
subprocess.run([sys.executable, setup_script_path], check=True)
print("--- Setup concluído com sucesso ---")
except subprocess.CalledProcessError as e:
print(f"ERRO CRÍTICO DURANTE O SETUP: 'setup.py' falhou com código {e.returncode}.")
sys.exit(1)
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
if not LTX_VIDEO_REPO_DIR.exists():
run_setup()
def add_deps_to_path():
"""Adiciona o repositório clonado ao sys.path para que suas bibliotecas possam ser importadas."""
if not LTX_VIDEO_REPO_DIR.exists():
raise FileNotFoundError(f"Repositório LTX-Video não encontrado em '{LTX_VIDEO_REPO_DIR}'. Execute o setup.")
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))
add_deps_to_path()
# --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
calculate_padding,
load_media_file,
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
# --- 4. FUNÇÕES HELPER DE LOG ---
def log_tensor_info(tensor, name="Tensor"):
if not isinstance(tensor, torch.Tensor):
print(f"\n[INFO] O item '{name}' não é um tensor para logar.")
return
print(f"\n--- Informações do Tensor: {name} ---")
print(f" - Shape: {tensor.shape}")
print(f" - Dtype: {tensor.dtype}")
print(f" - Device: {tensor.device}")
if tensor.numel() > 0:
print(f" - Min valor: {tensor.min().item():.4f}")
print(f" - Max valor: {tensor.max().item():.4f}")
print(f" - Média: {tensor.mean().item():.4f}")
else:
print(" - O tensor está vazio, sem estatísticas.")
print("------------------------------------------\n")
# --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
class VideoService:
def __init__(self):
print("Inicializando VideoService...")
self.config = self._load_config()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.last_memory_reserved_mb = 0.0
self._tmp_dirs = set()
self._tmp_files = set()
self._last_outputs = []
self.pipeline, self.latent_upsampler = self._load_models()
print(f"Movendo modelos para o dispositivo de inferência: {self.device}")
self.pipeline.to(self.device)
if self.latent_upsampler:
self.latent_upsampler.to(self.device)
# Política de precisão (FP8 opcional + autocast coerente)
self._apply_precision_policy()
if self.device == "cuda":
torch.cuda.empty_cache()
self._log_gpu_memory("Após carregar modelos")
print("VideoService pronto para uso.")
def _log_gpu_memory(self, stage_name: str):
if self.device != "cuda":
return
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
current_reserved_b = torch.cuda.memory_reserved(device_index)
current_reserved_mb = current_reserved_b / (1024 ** 2)
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
total_memory_mb = total_memory_b / (1024 ** 2)
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
processes = _query_gpu_processes_via_nvml(device_index)
if not processes:
processes = _query_gpu_processes_via_nvidiasmi(device_index)
print(f"\n--- [LOG DE MEMÓRIA GPU] - {stage_name} (cuda:{device_index}) ---")
print(f" - Uso Atual (Reservado): {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB")
print(f" - Variação desde o último log: {delta_mb:+.2f} MB")
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
print(f" - Pico de Uso (nesta operação): {peak_reserved_mb:.2f} MB")
print(_gpu_process_table(processes, os.getpid()), end="")
print("--------------------------------------------------\n")
self.last_memory_reserved_mb = current_reserved_mb
def _register_tmp_dir(self, d: str):
try:
if d and os.path.isdir(d):
self._tmp_dirs.add(d)
except Exception:
pass
def _register_tmp_file(self, f: str):
try:
if f and os.path.isfile(f):
self._tmp_files.add(f)
except Exception:
pass
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
keep = set(keep_paths or [])
extras = set(extra_paths or [])
for f in list(self._tmp_files | extras):
try:
if f not in keep and os.path.isfile(f):
os.remove(f)
except Exception:
pass
finally:
self._tmp_files.discard(f)
for d in list(self._tmp_dirs):
try:
if d not in keep and os.path.isdir(d):
shutil.rmtree(d, ignore_errors=True)
except Exception:
pass
finally:
self._tmp_dirs.discard(d)
gc.collect()
try:
if clear_gpu and torch.cuda.is_available():
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
except Exception:
pass
try:
self._log_gpu_memory("Após finalize")
except Exception:
pass
def _load_config(self):
base = LTX_VIDEO_REPO_DIR / "configs"
candidates = [
base / "ltxv-13b-0.9.8-dev-fp8.yaml",
base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
base / "ltxv-13b-0.9.8-dev-fp8.yaml.txt",
base / "ltxv-13b-0.9.8-distilled.yaml",
]
for cfg in candidates:
if cfg.exists():
with open(cfg, "r") as file:
return yaml.safe_load(file)
config_file_path = base / "ltxv-13b-0.9.8-distilled.yaml"
with open(config_file_path, "r") as file:
return yaml.safe_load(file)
def _load_models(self):
LTX_REPO = "Lightricks/LTX-Video"
distilled_model_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["checkpoint_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN"),
)
self.config["checkpoint_path"] = distilled_model_path
spatial_upscaler_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["spatial_upscaler_model_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN"),
)
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
pipeline = create_ltx_video_pipeline(
ckpt_path=self.config["checkpoint_path"],
precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
)
latent_upsampler = None
if self.config.get("spatial_upscaler_model_path"):
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
return pipeline, latent_upsampler
def _promote_fp8_weights_to_bf16(self, module):
if not isinstance(module, torch.nn.Module):
return
f8 = getattr(torch, "float8_e4m3fn", None)
if f8 is None:
return
for _, p in module.named_parameters(recurse=True):
try:
if p.dtype == f8:
with torch.no_grad():
p.data = p.data.to(torch.bfloat16)
except Exception:
pass
for _, b in module.named_buffers(recurse=True):
try:
if hasattr(b, "dtype") and b.dtype == f8:
b.data = b.data.to(torch.bfloat16)
except Exception:
pass
def _apply_precision_policy(self):
prec = str(self.config.get("precision", "")).lower()
self.runtime_autocast_dtype = torch.float32
if prec == "float8_e4m3fn":
self.runtime_autocast_dtype = torch.bfloat16
force_promote = os.getenv("LTXV_FORCE_BF16_ON_FP8", "0") == "1"
if force_promote and hasattr(torch, "float8_e4m3fn"):
try:
self._promote_fp8_weights_to_bf16(self.pipeline)
except Exception:
pass
try:
if self.latent_upsampler:
self._promote_fp8_weights_to_bf16(self.latent_upsampler)
except Exception:
pass
elif prec == "bfloat16":
self.runtime_autocast_dtype = torch.bfloat16
elif prec == "mixed_precision":
self.runtime_autocast_dtype = torch.float16
else:
self.runtime_autocast_dtype = torch.float32
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
tensor = torch.nn.functional.pad(tensor, padding_values)
if self.device == "cuda":
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
return tensor.to(self.device)
def generate(
self,
prompt,
negative_prompt,
mode="text-to-video",
start_image_filepath=None,
middle_image_filepath=None,
middle_frame_number=None,
middle_image_weight=1.0,
end_image_filepath=None,
end_image_weight=1.0,
input_video_filepath=None,
height=512,
width=704,
duration=2.0,
frames_to_use=9,
seed=42,
randomize_seed=True,
guidance_scale=3.0,
improve_texture=True,
progress_callback=None,
):
if self.device == "cuda":
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
self._log_gpu_memory("Início da Geração")
if mode == "image-to-video" and not start_image_filepath:
raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
if mode == "video-to-video" and not input_video_filepath:
raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video")
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
seed_everething(used_seed)
FPS = 24.0
MAX_NUM_FRAMES = 257
target_frames_rounded = round(duration * FPS)
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
height_padded = ((height - 1) // 32 + 1) * 32
width_padded = ((width - 1) // 32 + 1) * 32
padding_values = calculate_padding(height, width, height_padded, width_padded)
generator = torch.Generator(device=self.device).manual_seed(used_seed)
conditioning_items = []
if mode == "image-to-video":
start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
if middle_image_filepath and middle_frame_number is not None:
middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
if end_image_filepath:
end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
last_frame_index = actual_num_frames - 1
conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))
call_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height_padded,
"width": width_padded,
"num_frames": actual_num_frames,
"frame_rate": int(FPS),
"generator": generator,
"output_type": "pt",
"conditioning_items": conditioning_items if conditioning_items else None,
"media_items": None,
"decode_timestep": self.config["decode_timestep"],
"decode_noise_scale": self.config["decode_noise_scale"],
"stochastic_sampling": self.config["stochastic_sampling"],
"image_cond_noise_scale": 0.15,
"is_video": True,
"vae_per_channel_normalize": True,
"mixed_precision": (self.config["precision"] == "mixed_precision"),
"offload_to_cpu": False,
"enhance_prompt": False,
"skip_layer_strategy": SkipLayerStrategy.AttentionValues,
}
if mode == "video-to-video":
call_kwargs["media_items"] = load_media_file(
media_path=input_video_filepath,
height=height,
width=width,
max_frames=int(frames_to_use),
padding=padding_values,
).to(self.device)
result_tensor = None
multi_scale_pipeline = None
if improve_texture:
if not self.latent_upsampler:
raise ValueError("Upscaler espacial não carregado.")
multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler)
first_pass_args = self.config.get("first_pass", {}).copy()
first_pass_args["guidance_scale"] = float(guidance_scale)
second_pass_args = self.config.get("second_pass", {}).copy()
second_pass_args["guidance_scale"] = float(guidance_scale)
multi_scale_call_kwargs = call_kwargs.copy()
multi_scale_call_kwargs.update(
{
"downscale_factor": self.config["downscale_factor"],
"first_pass": first_pass_args,
"second_pass": second_pass_args,
}
)
ctx = contextlib.nullcontext()
if self.device == "cuda":
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype)
with ctx:
result_tensor = multi_scale_pipeline(**multi_scale_call_kwargs).images
log_tensor_info(result_tensor, "Resultado da Etapa 2 (Saída do Pipeline Multi-Scale)")
else:
single_pass_kwargs = call_kwargs.copy()
first_pass_config = self.config.get("first_pass", {})
single_pass_kwargs.update(
{
"guidance_scale": float(guidance_scale),
"stg_scale": first_pass_config.get("stg_scale"),
"rescaling_scale": first_pass_config.get("rescaling_scale"),
"skip_block_list": first_pass_config.get("skip_block_list"),
}
)
# Escolha de schedule única para garantir guidance_mapping definido e consistente
schedule = first_pass_config.get("timesteps")
if schedule is None:
schedule = first_pass_config.get("guidance_timesteps")
if mode == "video-to-video":
schedule = [0.7]
print("[INFO] Modo video-to-video (etapa única): definindo timesteps (força) para [0.7]")
if isinstance(schedule, (list, tuple)) and len(schedule) > 0:
single_pass_kwargs["timesteps"] = schedule
single_pass_kwargs["guidance_timesteps"] = schedule # garante criação de guidance_mapping
print("\n[INFO] Executando pipeline de etapa única...")
ctx = contextlib.nullcontext()
if self.device == "cuda":
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype)
with ctx:
result_tensor = self.pipeline(**single_pass_kwargs).images
pad_left, pad_right, pad_top, pad_bottom = padding_values
slice_h_end = -pad_bottom if pad_bottom > 0 else None
slice_w_end = -pad_right if pad_right > 0 else None
result_tensor = result_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
log_tensor_info(result_tensor, "Tensor Final (Após Pós-processamento, Antes de Salvar)")
# Staging seguro em tmp e move para diretório persistente
temp_dir = tempfile.mkdtemp(prefix="ltxv_")
self._register_tmp_dir(temp_dir)
results_dir = "/app/output"
os.makedirs(results_dir, exist_ok=True)
final_output_path = None
output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
try:
# Escrita quadro a quadro para evitar array 4D gigante em RAM
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], codec="libx264", quality=8) as writer:
T = result_tensor.shape[2] # (B, C, T, H, W)
for i in range(T):
frame_chw = result_tensor[0, :, i] # (C,H,W) no device
frame_hwc_u8 = (frame_chw.permute(1, 2, 0) # (H,W,C)
.clamp(0, 1)
.mul(255)
.to(torch.uint8)
.cpu()
.numpy())
writer.append_data(frame_hwc_u8)
if progress_callback:
progress_callback(i + 1, T)
candidate_final = os.path.join(results_dir, f"output_{used_seed}.mp4")
try:
shutil.move(output_video_path, candidate_final)
final_output_path = candidate_final
except Exception:
final_output_path = output_video_path
self._register_tmp_file(output_video_path)
self._log_gpu_memory("Fim da Geração")
return final_output_path, used_seed
finally:
try:
del result_tensor
except Exception:
pass
try:
del multi_scale_pipeline
except Exception:
pass
gc.collect()
try:
if self.device == "cuda":
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
except Exception:
pass
try:
self.finalize(keep_paths=[final_output_path] if final_output_path else [])
except Exception:
pass
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService() |