chess_moves / src /move_finder.py
hash-map's picture
Upload 22 files
c871a64 verified
import random
piece_score = {'K': 1000, 'Q': 900, 'R': 500, 'B': 330, 'N': 320, 'p': 100,'--':0,'-':0}
CHECKMATE = 100000
STALEMATE = 0
DEPTH = 3
# Pawn (p = 100)
pawn_table = [
[ 0, 0, 0, 0, 0, 0, 0, 0],
[ 5, 10, 10,-20,-20, 10, 10, 5],
[ 5, -5,-10, 0, 0,-10, -5, 5],
[ 0, 0, 0, 20, 20, 0, 0, 0],
[ 5, 5, 10, 25, 25, 10, 5, 5],
[ 10, 10, 20, 30, 30, 20, 10, 10],
[ 50, 50, 50, 50, 50, 50, 50, 50],
[ 0, 0, 0, 0, 0, 0, 0, 0]
]
# Knight (N = 320)
knight_table = [
[-50,-40,-30,-30,-30,-30,-40,-50],
[-40,-20, 0, 0, 0, 0,-20,-40],
[-30, 0, 10, 15, 15, 10, 0,-30],
[-30, 5, 15, 20, 20, 15, 5,-30],
[-30, 0, 15, 20, 20, 15, 0,-30],
[-30, 5, 10, 15, 15, 10, 5,-30],
[-40,-20, 0, 5, 5, 0,-20,-40],
[-50,-40,-30,-30,-30,-30,-40,-50]
]
# Bishop (B = 330)
bishop_table = [
[-20,-10,-10,-10,-10,-10,-10,-20],
[-10, 5, 0, 0, 0, 0, 5,-10],
[-10, 10, 10, 10, 10, 10, 10,-10],
[-10, 0, 10, 10, 10, 10, 0,-10],
[-10, 5, 5, 10, 10, 5, 5,-10],
[-10, 0, 5, 10, 10, 5, 0,-10],
[-10, 0, 0, 0, 0, 0, 0,-10],
[-20,-10,-10,-10,-10,-10,-10,-20]
]
# Rook (R = 500)
rook_table = [
[ 0, 0, 0, 0, 0, 0, 0, 0],
[ 5, 10, 10, 10, 10, 10, 10, 5],
[ -5, 0, 0, 0, 0, 0, 0, -5],
[ -5, 0, 0, 0, 0, 0, 0, -5],
[ -5, 0, 0, 0, 0, 0, 0, -5],
[ -5, 0, 0, 0, 0, 0, 0, -5],
[ -5, 0, 0, 0, 0, 0, 0, -5],
[ 0, 0, 0, 5, 5, 0, 0, 0]
]
# Queen (Q = 900)
queen_table = [
[-20,-10,-10, -5, -5,-10,-10,-20],
[-10, 0, 0, 0, 0, 5, 0,-10],
[-10, 0, 5, 5, 5, 5, 5,-10],
[ -5, 0, 5, 5, 5, 5, 0, -5],
[ 0, 0, 5, 5, 5, 5, 0, -5],
[-10, 5, 5, 5, 5, 5, 0,-10],
[-10, 0, 5, 0, 0, 0, 0,-10],
[-20,-10,-10, -5, -5,-10,-10,-20]
]
# King (K = 1000) – Middlegame
king_table_mid = [
[-30,-40,-40,-50,-50,-40,-40,-30],
[-30,-40,-40,-50,-50,-40,-40,-30],
[-30,-40,-40,-50,-50,-40,-40,-30],
[-30,-40,-40,-50,-50,-40,-40,-30],
[-20,-30,-30,-40,-40,-30,-30,-20],
[-10,-20,-20,-20,-20,-20,-20,-10],
[ 20, 20, 0, 0, 0, 0, 20, 20],
[ 20, 30, 10, 0, 0, 10, 30, 20]
]
# King (K = 1000) – Endgame
king_table_end = [
[-50,-40,-30,-20,-20,-30,-40,-50],
[-30,-20,-10, 0, 0,-10,-20,-30],
[-30,-10, 20, 30, 30, 20,-10,-30],
[-30,-10, 30, 40, 40, 30,-10,-30],
[-30,-10, 30, 40, 40, 30,-10,-30],
[-30,-10, 20, 30, 30, 20,-10,-30],
[-30,-30, 0, 0, 0, 0,-30,-30],
[-50,-30,-30,-30,-30,-30,-30,-50]
]
king_scores = [[0]*8 for _ in range(8)]
for r in range(8):
for c in range(8):
king_scores[r][c]= king_table_end[r][c]+ king_table_end[r][c]
for r in range(4):
for c in range(8):
pawn_table[r][c],pawn_table[7-r][c]=pawn_table[r][c],pawn_table[7-r][c]
peice_position_scores = {'N':knight_table,'K':king_scores,'N':knight_table,'B':bishop_table,'Q':queen_table,'p':pawn_table,'R':rook_table}
'''
use openings
use numpy and better board representation
better use p.q or something like that
transposition tables
save the evaluation zobra hash
add which moves it is stoping
add attacking and defensive
we can teach end game theory
if apeice is attacked try to move that first
storing the data of moves not to recalculate
'''
def random_move(valid_moves):
ind=random.randint(0,len(valid_moves)-1)
return valid_moves[ind]
## checking for greedy
# for all moves check where i can have more peices/value
#but we also need to score_material the next move so that the best possible comes out
#greedy algorithim and try to get better position
#score material on board
#assume black playing ai and check mate is worst
# go for level 2
# we want to minize the maximum of opponent score
def find_best_move_non_recursion(gs,valid_moves):
turn = 1 if gs.whiteToMove else -1
opponent_min_max_score= CHECKMATE #smallest of their maximums
best_player_move = None
random.shuffle(valid_moves)
for player_move in valid_moves:
gs.make_move(player_move)
opponent_moves = gs.get_valid_moves()
if gs.check_mate:
opponent_max_score = -CHECKMATE
elif gs.steale_mate:
opponent_max_score=STALEMATE
else:
opponent_max_score = -CHECKMATE
random.shuffle(opponent_moves)
for opponent_move in opponent_moves:
gs.make_move(opponent_move)
gs.get_valid_move()
if gs.check_mate:
score = CHECKMATE
elif gs.steale_mate:
score=STALEMATE
else:
score = -turn * score_material(gs.board)
if (score>opponent_max_score):
opponent_max_score=score # try to find best move for opponent
gs.undo_move()
if opponent_min_max_score> opponent_max_score:
opponent_min_max_score = opponent_max_score # try to find best move for u which is worst(best) move
best_move = player_move # my new best is least of all opponent bests
gs.undo_move()
return best_move
# solve this recursively
# prune the branches we do not need
'''
helper method for best method
'''
def find_best_move(gs, valid_moves, return_queue):
global count, best_moves
count = 0
score = find_move_nega_max_alpha_beta(
gs, gs.get_valid_moves(), DEPTH, -2*CHECKMATE, 2*CHECKMATE, 1
)
print("Top moves:")
for score, mv in best_moves:
print(mv.get_chess_notation(), "score:", score)
# pick a random move among top N
chosen_move = random.choice(best_moves)[1]
return_queue.put(chosen_move)
'''
find min max move
'''
def find_move_min_max(gs,valid_moves,depth,whiteToMove):
global next_move
if depth == 0 :
return score_material(gs)
if whiteToMove: #maximize score
max_score = - CHECKMATE
for move in valid_moves:
gs.make_move(move)
next_moves = gs.get_valid_moves()
score = find_move_min_max(gs,next_moves,depth-1,False)
if score>max_score:
max_score=score
if depth == DEPTH :
next_move = move
gs.undo_move()
return max_score
else:
min_score = CHECKMATE
for move in valid_moves:
gs.make_move(move)
next_moves = gs.get_valid_moves()
score = find_move_min_max(gs,next_moves,depth-1,True)
if score<min_score:
min_score=score
if depth == DEPTH :
next_move = move
gs.undo_move()
return min_score
'''
combine if else to one
'''
def find_move_nega_max(gs,valid_moves,depth,turn):
#always try to maximize but with multilier
global next_move,count
count +=1
if depth == 0 :
return turn * score_material(gs)
max_score = CHECKMATE
for move in valid_moves:
gs.make_move(move)
next_moves = gs.get_valid_moves()
score = -find_move_nega_max(gs,next_moves,depth-1,-1 * turn) #this is very important
if score>max_score:
max_score=score
if depth == DEPTH :
next_move = move
gs.undo_move()
return max_score
'''
the alpha beta pruning
remove branches that wont make any good
also depends on scoring algorithim
also add positional scores
need to control more squares and attack more squares
alpha beta these are the maximum and minimum u can acheive values overall
if max_score>alpha then max_score is alpha
if alpha>beta then prune that branch
ugot best else where no need for it
'''
# Killer moves: 2 per depth (ply)
killer_moves = {}
# History heuristic: success count
history_heuristic = {
'w': [[0 for _ in range(8)] for _ in range(8)],
'b': [[0 for _ in range(8)] for _ in range(8)]
}
def order_moves(gs, moves):
scored_moves = []
for move in moves:
score=0
score -= score_material(gs)
# 1. Captures (MVV-LVA style)
if move.is_capture:
attacker = move.peice_moved[1]
victim = move.peice_captured[1] if move.peice_captured[1]!='-' else '--'
score += ( piece_score.get(victim, 0))*10 - piece_score.get(attacker, 0)
# 2. Checks (simulate move and test)
gs.make_move(move)
if gs.incheck:
score += 80
gs.undo_move()
# 3. Promotions
if move.is_pawn_promotion:
score += 150 + piece_score['Q']*10
# 4. Castling (good for king safety)
if move.castle:
score += 50
# 5.
for dr, dc in [(-1,0),(1,0),(0,-1),(0,1),(-1,-1),(1,1),(-1,1),(1,-1)]:
rr, cc = move.end_row + dr, move.end_col + dc
if 0 <= rr < 8 and 0 <= cc < 8:
piece = gs.board[rr][cc]
if piece != "--" and piece[0] == move.peice_moved[0]: # same color
score += 1
score += score_material(gs)
scored_moves.append((score, move))
# Sort by score descending
scored_moves.sort(key=lambda x: x[0], reverse=True)
return [m for _, m in scored_moves]
# def find_move_nega_max_alpha_beta(gs, valid_moves, depth, alpha, beta, turn):
# global count, next_move
# count += 1 # counts all nodes visited
# if depth == 0:
# return turn * score_material(gs)
# max_score = -CHECKMATE
# valid_moves=order_moves(gs,valid_moves)
# for move in valid_moves:
# gs.make_move(move)
# next_moves = gs.get_valid_moves()
# score = -find_move_nega_max_alpha_beta(
# gs, next_moves, depth - 1, -beta, -alpha, -turn
# )
# gs.undo_move()
# if score > max_score:
# max_score = score
# if depth == DEPTH:
# next_move = move
# alpha = max(alpha, max_score)
# if alpha >= beta:
# break
# return max_score
TOP_N = 5 # number of best moves you want
def find_move_nega_max_alpha_beta(gs, valid_moves, depth, alpha, beta, turn):
if depth == 0:
return turn * score_material(gs)
max_score = -CHECKMATE
scored_moves = []
# move ordering to improve pruning
valid_moves = order_moves(gs, valid_moves)
for move in valid_moves:
gs.make_move(move)
next_moves = gs.get_valid_moves()
score = -find_move_nega_max_alpha_beta(
gs, next_moves, depth - 1, -beta, -alpha, -turn
)
gs.undo_move()
scored_moves.append((score, move))
max_score = max(max_score, score)
alpha = max(alpha, max_score)
if alpha >= beta:
break # alpha-beta cutoff
# Only save best moves at root depth
if depth == DEPTH:
scored_moves.sort(key=lambda x: x[0], reverse=True)
best_moves = [(score, move) for score, move in scored_moves[:TOP_N]]
return max_score
'''
score the board
positive score good for white
a negative score good for black
increase the scoring function
counting attacking and defending moves
'''
def score_material(self):
"""Full evaluation of the board with material, positional, mobility, defense, etc."""
if self.check_mate:
if self.whiteToMove:
return -CHECKMATE
else:
return CHECKMATE
elif self.steale_mate:
return STALEMATE
board = self.board
score = 0
white_squares_controlled = set()
black_squares_controlled = set()
# Material, piece-square, and piece defense evaluation
for r in range(8):
for c in range(8):
square = (r, c)
piece_info = board[r][c]
if piece_info == "--":
continue
color, piece = piece_info[0], piece_info[1]
base_value = piece_score[piece]
if color == 'w':
# Material value
score += base_value
score += peice_position_scores[piece][r][c]
#
moves = self.move_functions[piece](r,c,[])
for move in moves:
white_squares_controlled.add((move.end_row, move.end_col))
# Bonus for defending own piece
if board[move.end_row][move.end_col][0] == 'w':
defended_piece = board[move.end_row][move.end_col][1]
score += piece_score[defended_piece]
# Bonus for killing enemy valuable piece
if board[move.end_row][move.end_col][0] == 'b':
victim = board[move.end_row][move.end_col][1]
score += piece_score[victim] *10
elif color == 'b':
score -= base_value
score -= peice_position_scores[piece][7 - r][c]
moves = self.move_functions[piece](r,c,[])
for move in moves:
black_squares_controlled.add((move.end_row, move.end_col))
# Defense bonus
if board[move.end_row][move.end_col][0] == 'b':
defended_piece = board[move.end_row][move.end_col][1]
score -= piece_score[defended_piece]
# Killing enemy valuable piece
if board[move.end_row][move.end_col][0] == 'w':
victim = board[move.end_row][move.end_col][1]
score -= piece_score[victim] *10
# Bishop pair bonus
white_bishops = sum(1 for r in range(8) for c in range(8) if board[r][c] == 'wB')
black_bishops = sum(1 for r in range(8) for c in range(8) if board[r][c] == 'bB')
if white_bishops >= 2:
score += 50
if black_bishops >= 2:
score -= 50
# King safety (penalize exposed kings)
score += self.king_safety( "w") - self.king_safety("b")
score += (len(white_squares_controlled) - len(black_squares_controlled))*5
return score
def get_best_n_moves(gs, n=5):
"""
Returns best n moves for both White and Black.
"""
best_white, best_black = [], []
# White to move
if gs.whiteToMove:
moves = gs.get_valid_moves()
scored = []
for move in moves:
gs.make_move(move)
score = -find_move_nega_max_alpha_beta(
gs, gs.get_valid_moves(), DEPTH - 1, -CHECKMATE, CHECKMATE, -1
)
gs.undo_move()
scored.append((score, str(move)))
scored.sort(key=lambda x: x[0], reverse=True)
best_white = scored[:n]
# Black to move
else:
moves = gs.get_valid_moves()
scored = []
for move in moves:
gs.make_move(move)
score = -find_move_nega_max_alpha_beta(
gs, gs.get_valid_moves(), DEPTH - 1, -CHECKMATE, CHECKMATE, 1
)
gs.undo_move()
scored.append((score, str(move)))
scored.sort(key=lambda x: x[0], reverse=True)
best_black = scored[:n]
return best_white if best_white else best_black