Spaces:
Running
Running
File size: 17,470 Bytes
d988980 28f8ac4 dc56cce 28f8ac4 dc56cce 28f8ac4 dc56cce d988980 28f8ac4 d988980 dc56cce d988980 dc56cce 28f8ac4 dc56cce d988980 dc56cce 6130c96 dc56cce d988980 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
# import gradio as gr
# import subprocess
# import os
# import sys
# from datetime import datetime
#
# # The name of your existing training script
# TRAINING_SCRIPT = "LayoutLM_Train_Passage.py"
#
# # --- CORRECTED MODEL PATH BASED ON LayoutLM_Train_Passage.py ---
# MODEL_OUTPUT_DIR = "checkpoints"
# MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
# MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
#
#
# # ----------------------------------------------------------------
#
#
# def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
# """
# Handles the Gradio submission and executes the training script using subprocess.
# """
#
# # 1. Setup: Create output directory if it doesn't exist
# os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
#
# # 2. File Handling: Use the temporary path of the uploaded file
# # if dataset_file is None or not dataset_file.path.endswith(".json"):
# # return "β ERROR: Please upload a valid Label Studio JSON file.", None
#
# input_path = dataset_file.path
#
# progress(0.1, desc="Starting LayoutLMv3 Training...")
#
# log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
#
# # 3. Construct the subprocess command
# command = [
# sys.executable,
# TRAINING_SCRIPT,
# "--mode", "train",
# "--input", input_path,
# "--batch_size", str(batch_size),
# "--epochs", str(epochs),
# "--lr", str(lr),
# "--max_len", str(max_len)
# ]
#
# log_output += f"Executing command: {' '.join(command)}\n\n"
#
# try:
# # 4. Run the training script and capture output
# process = subprocess.Popen(
# command,
# stdout=subprocess.PIPE,
# stderr=subprocess.STDOUT,
# text=True,
# bufsize=1
# )
#
# # Stream logs in real-time
# for line in iter(process.stdout.readline, ""):
# log_output += line
# yield log_output, None # Send partial log to Gradio output
#
# process.stdout.close()
# return_code = process.wait()
#
# # 5. Check for successful completion
# if return_code == 0:
# log_output += "\nβ
TRAINING COMPLETE! Model saved."
#
# # 6. Prepare download links based on script's saved path
# model_exists = os.path.exists(MODEL_FILE_PATH)
#
# if model_exists:
# log_output += f"\nModel path: {MODEL_FILE_PATH}"
# # Return final log, and the file path for Gradio's download component
# return log_output, MODEL_FILE_PATH
# else:
# log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
# return log_output, None
# else:
# log_output += f"\n\nβ TRAINING FAILED with return code {return_code}. Check logs above."
# return log_output, None
#
# except FileNotFoundError:
# return f"β ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space.", None
# except Exception as e:
# return f"β An unexpected error occurred: {e}", None
#
#
# # --- Gradio Interface Setup (using Blocks for a nicer layout) ---
# with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
# gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
# gr.Markdown(
# """
# Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model using your script.
#
# **Note:** The trained model is saved in the **`checkpoints/`** folder as **`layoutlmv3_crf_passage.pth`**.
# """
# )
#
# with gr.Row():
# with gr.Column(scale=1):
# file_input = gr.File(
# label="1. Upload Label Studio JSON Dataset"
# )
#
# gr.Markdown("---")
# gr.Markdown("### βοΈ Training Parameters")
#
# batch_size_input = gr.Slider(
# minimum=1, maximum=32, step=1, value=4, label="Batch Size (--batch_size)"
# )
# epochs_input = gr.Slider(
# minimum=1, maximum=20, step=1, value=5, label="Epochs (--epochs)"
# )
# lr_input = gr.Number(
# value=5e-5, label="Learning Rate (--lr)"
# )
# max_len_input = gr.Number(
# value=512, label="Max Sequence Length (--max_len)"
# )
#
# with gr.Column(scale=2):
# train_button = gr.Button("π₯ Train Model", variant="primary")
#
# log_output = gr.Textbox(
# label="Training Log Output",
# lines=20,
# autoscroll=True,
# placeholder="Click 'Train Model' to start and see real-time logs..."
# )
#
# gr.Markdown("---")
# gr.Markdown(f"### π Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
#
# # Only providing the download link for the saved .pth model file
# model_download = gr.File(label=f"Trained Model File ({MODEL_FILE_NAME})", interactive=False)
#
# # Define the action when the button is clicked
# train_button.click(
# fn=train_model,
# inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
# outputs=[log_output, model_download]
# )
#
# if __name__ == "__main__":
# demo.launch(server_port=7860, server_name="0.0.0.0")
# import gradio as gr
# import subprocess
# import os
# import sys
# from datetime import datetime
#
# # The name of your existing training script
# TRAINING_SCRIPT = "LayoutLM_Train_Passage.py"
#
# # --- CORRECTED MODEL PATH BASED ON LayoutLM_Train_Passage.py ---
# MODEL_OUTPUT_DIR = "checkpoints"
# MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
# MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
#
#
# # ----------------------------------------------------------------
#
#
# def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
# """
# Handles the Gradio submission and executes the training script using subprocess.
# """
#
# # 1. Setup: Create output directory if it doesn't exist
# os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
#
# # 2. File Handling: Use the temporary path of the uploaded file
# if dataset_file is None:
# yield "β ERROR: Please upload a file.", None
# return
#
# # FIX: Gradio returns the path in the .name attribute, not .path
# input_path = dataset_file.name
#
# if not input_path.lower().endswith(".json"):
# yield "β ERROR: Please upload a valid Label Studio JSON file (.json).", None
# return
#
# progress(0.1, desc="Starting LayoutLMv3 Training...")
#
# log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
#
# # 3. Construct the subprocess command
# command = [
# sys.executable,
# TRAINING_SCRIPT,
# "--mode", "train",
# "--input", input_path,
# "--batch_size", str(batch_size),
# "--epochs", str(epochs),
# "--lr", str(lr),
# "--max_len", str(max_len)
# ]
#
# log_output += f"Executing command: {' '.join(command)}\n\n"
# yield log_output, None # Yield the command to the log output
#
# try:
# # 4. Run the training script and capture output
# process = subprocess.Popen(
# command,
# stdout=subprocess.PIPE,
# stderr=subprocess.STDOUT,
# text=True,
# bufsize=1
# )
#
# # Stream logs in real-time
# for line in iter(process.stdout.readline, ""):
# log_output += line
# yield log_output, None # Send partial log to Gradio output
#
# process.stdout.close()
# return_code = process.wait()
#
# # 5. Check for successful completion
# if return_code == 0:
# log_output += "\nβ
TRAINING COMPLETE! Model saved."
#
# # 6. Prepare download links based on script's saved path
# model_exists = os.path.exists(MODEL_FILE_PATH)
#
# if model_exists:
# log_output += f"\nModel path: {MODEL_FILE_PATH}"
# # Return final log, and the file path for Gradio's download component
# return log_output, MODEL_FILE_PATH
# else:
# log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
# return log_output, None
# else:
# log_output += f"\n\nβ TRAINING FAILED with return code {return_code}. Check logs above."
# return log_output, None
#
# except FileNotFoundError:
# return f"β ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space.", None
# except Exception as e:
# return f"β An unexpected error occurred: {e}", None
#
#
# # --- Gradio Interface Setup (using Blocks for a nicer layout) ---
# with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
# gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
# gr.Markdown(
# """
# Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model using your script.
#
# **Note:** The trained model is saved in the **`checkpoints/`** folder as **`layoutlmv3_crf_passage.pth`**.
# """
# )
#
# with gr.Row():
# with gr.Column(scale=1):
# file_input = gr.File(
# label="1. Upload Label Studio JSON Dataset"
# )
#
# gr.Markdown("---")
# gr.Markdown("### βοΈ Training Parameters")
#
# batch_size_input = gr.Slider(
# minimum=1, maximum=32, step=1, value=4, label="Batch Size (--batch_size)"
# )
# epochs_input = gr.Slider(
# minimum=1, maximum=20, step=1, value=5, label="Epochs (--epochs)"
# )
# lr_input = gr.Number(
# value=5e-5, label="Learning Rate (--lr)"
# )
# max_len_input = gr.Number(
# value=512, label="Max Sequence Length (--max_len)"
# )
#
# with gr.Column(scale=2):
# train_button = gr.Button("π₯ Train Model", variant="primary")
#
# log_output = gr.Textbox(
# label="Training Log Output",
# lines=20,
# autoscroll=True,
# placeholder="Click 'Train Model' to start and see real-time logs..."
# )
#
# gr.Markdown("---")
# gr.Markdown(f"### π Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
#
# # Only providing the download link for the saved .pth model file
# model_download = gr.File(label=f"Trained Model File ({MODEL_FILE_NAME})", interactive=False)
#
# # Define the action when the button is clicked
# train_button.click(
# fn=train_model,
# inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
# outputs=[log_output, model_download]
# )
#
# if __name__ == "__main__":
# # Removed server_port and server_name as they are often unnecessary
# # and sometimes cause issues in managed Space environments.
# demo.launch()
import gradio as gr
import subprocess
import os
import sys
from datetime import datetime
# FIX: Update the script name to the correct one you uploaded
TRAINING_SCRIPT = "HF_LayoutLM_with_Passage.py"
# --- CORRECTED MODEL PATH BASED ON YOUR SCRIPT ---
MODEL_OUTPUT_DIR = "checkpoints"
MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
# ----------------------------------------------------------------
def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
"""
Handles the Gradio submission and executes the training script using subprocess.
"""
# 1. Setup: Create output directory if it doesn't exist
os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
# 2. File Handling: Use the temporary path of the uploaded file
if dataset_file is None:
yield "β ERROR: Please upload a file.", None
return
# Using .name (Corrected in previous steps)
input_path = dataset_file.name
if not input_path.lower().endswith(".json"):
yield "β ERROR: Please upload a valid Label Studio JSON file (.json).", None
return
progress(0.1, desc="Starting LayoutLMv3 Training...")
log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
# 3. Construct the subprocess command
command = [
sys.executable,
# Now uses the corrected TRAINING_SCRIPT variable
TRAINING_SCRIPT,
"--mode", "train",
"--input", input_path,
"--batch_size", str(batch_size),
"--epochs", str(epochs),
"--lr", str(lr),
"--max_len", str(max_len)
]
log_output += f"Executing command: {' '.join(command)}\n\n"
yield log_output, None # Yield the command to the log output
try:
# 4. Run the training script and capture output
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1
)
# Stream logs in real-time
for line in iter(process.stdout.readline, ""):
log_output += line
yield log_output, None # Send partial log to Gradio output
process.stdout.close()
return_code = process.wait()
# 5. Check for successful completion
if return_code == 0:
log_output += "\nβ
TRAINING COMPLETE! Model saved."
# 6. Prepare download links based on script's saved path
model_exists = os.path.exists(MODEL_FILE_PATH)
if model_exists:
log_output += f"\nModel path: {MODEL_FILE_PATH}"
# Return final log, and the file path for Gradio's download component
return log_output, MODEL_FILE_PATH
else:
log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
return log_output, None
else:
log_output += f"\n\nβ TRAINING FAILED with return code {return_code}. Check logs above."
return log_output, None
except FileNotFoundError:
return f"β ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space.", None
except Exception as e:
return f"β An unexpected error occurred: {e}", None
# --- Gradio Interface Setup (using Blocks for a nicer layout) ---
with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
gr.Markdown(
"""
Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model using your script.
**Note:** The trained model is saved in the **`checkpoints/`** folder as **`layoutlmv3_crf_passage.pth`**.
"""
)
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="1. Upload Label Studio JSON Dataset"
)
gr.Markdown("---")
gr.Markdown("### βοΈ Training Parameters")
batch_size_input = gr.Slider(
minimum=1, maximum=32, step=1, value=4, label="Batch Size (--batch_size)"
)
epochs_input = gr.Slider(
minimum=1, maximum=20, step=1, value=5, label="Epochs (--epochs)"
)
lr_input = gr.Number(
value=5e-5, label="Learning Rate (--lr)"
)
max_len_input = gr.Number(
value=512, label="Max Sequence Length (--max_len)"
)
with gr.Column(scale=2):
train_button = gr.Button("π₯ Train Model", variant="primary")
log_output = gr.Textbox(
label="Training Log Output",
lines=20,
autoscroll=True,
placeholder="Click 'Train Model' to start and see real-time logs..."
)
gr.Markdown("---")
gr.Markdown(f"### π Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
# Only providing the download link for the saved .pth model file
model_download = gr.File(label=f"Trained Model File ({MODEL_FILE_NAME})", interactive=False)
# Define the action when the button is clicked
train_button.click(
fn=train_model,
inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
outputs=[log_output, model_download]
)
if __name__ == "__main__":
demo.launch() |