File size: 7,262 Bytes
a061490
df5c96c
 
 
 
 
 
0225bda
df5c96c
 
a061490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0225bda
df5c96c
 
 
 
 
 
 
 
 
 
 
 
 
 
0225bda
 
 
 
df5c96c
0225bda
df5c96c
 
0225bda
a061490
 
 
0225bda
df5c96c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0225bda
df5c96c
 
0225bda
df5c96c
 
 
 
 
 
 
 
0225bda
df5c96c
 
 
 
 
 
 
 
 
0225bda
df5c96c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0225bda
df5c96c
0225bda
df5c96c
0225bda
df5c96c
0225bda
df5c96c
0225bda
df5c96c
 
 
a061490
 
 
 
 
 
 
 
 
 
 
 
df5c96c
 
a061490
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from json import load
from typing import Any, Dict, Optional

from numpy import array, expand_dims, float32, ndarray, transpose, zeros
from PIL import Image
from sentence_transformers import SentenceTransformer
from tensorflow import constant
from tensorflow.keras.models import load_model
from transformers import TFConvNextV2Model

# πŸ“Œ GLOBAL VARIABLES (categories)
CATEGORY_MAP: Dict[str, str] = {}
CLASS_LABELS = []


def build_category_map(categories_json_path: str):
    """
    Builds a flat dictionary and a list of category labels by traversing the hierarchical categories.json file.
    """
    global CATEGORY_MAP, CLASS_LABELS

    try:
        with open(categories_json_path, "r") as f:
            categories_data = load(f)
    except FileNotFoundError:
        print(
            f"❌ Error: {categories_json_path} not found. Using hardcoded labels as fallback."
        )
        return

    category_map = {}

    model_trained_ids = [
        "abcat0100000",
        "abcat0200000",
        "abcat0207000",
        "abcat0300000",
        "abcat0400000",
        "abcat0500000",
        "abcat0700000",
        "abcat0800000",
        "abcat0900000",
        "cat09000",
        "pcmcat128500050004",
        "pcmcat139900050002",
        "pcmcat242800050021",
        "pcmcat252700050006",
        "pcmcat312300050015",
        "pcmcat332000050000",
    ]

    def traverse_categories(categories):
        for category in categories:
            category_map[category["id"]] = category["name"]
            if "subCategories" in category and category["subCategories"]:
                traverse_categories(category["subCategories"])
            if "path" in category and category["path"]:
                for path_item in category["path"]:
                    category_map[path_item["id"]] = path_item["name"]

    traverse_categories(categories_data)

    CATEGORY_MAP = category_map
    CLASS_LABELS = model_trained_ids


# πŸ“Œ LOAD MODELS
print("πŸ’¬ Loading embedding models...")
try:
    text_embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
    image_feature_extractor = TFConvNextV2Model.from_pretrained(
        "facebook/convnextv2-tiny-22k-224"
    )
    print("βœ… Embedding models loaded successfully!")
except Exception as e:
    print(f"❌ Error loading embedding models: {e}")
    text_embedding_model, image_feature_extractor = None, None

# Load the final classification models (MLP heads)
print("πŸ’¬ Loading classification models...")
try:
    text_model = load_model("./models/text_model")
    image_model = load_model("./models/image_model")
    multimodal_model = load_model("./models/multimodal_model")
    print("βœ… Classification models loaded successfully!")
except Exception as e:
    print(f"❌ Error loading classification models: {e}")
    text_model, image_model, multimodal_model = None, None, None

# Generate category map and class labels list
build_category_map("./data/raw/categories.json")


# πŸ“Œ EMBEDDING FUNCTIONS
def get_text_embeddings(text: Optional[str]) -> ndarray:
    """
    Generates a dense embedding vector from a text string.

    Args:
        text (Optional[str]): The input text. Can be None or an empty string.

    Returns:
        np.ndarray: A NumPy array of shape (1, 384) representing the text
                    embedding. Returns a zero vector if the input is empty.
    """
    # Handle cases where no text is provided
    if not text or not text.strip():
        # Returns a zero vector with the correct dimension (384)
        return zeros(
            (1, text_embedding_model.get_sentence_embedding_dimension()), dtype=float32
        )

    # Use the pre-trained SentenceTransformer to encode the text
    embeddings = text_embedding_model.encode([text])
    return array(embeddings, dtype=float32)


def get_image_embeddings(image_path: Optional[str]) -> ndarray:
    """
    Preprocesses an image and generates an embedding vector using a pre-trained model.

    Args:
        image_path (Optional[str]): The file path to the image.

    Returns:
        np.ndarray: A NumPy array of shape (1, 768) representing the image
                    embedding. Returns a zero vector if no image is provided.
    """
    # Handle cases where no image is provided
    if image_path is None:
        return zeros((1, 768), dtype=float32)

    # Load the image and convert to RGB format
    image = Image.open(image_path).convert("RGB")

    # Resize the image to the model's expected input size (224x224)
    image = image.resize((224, 224), Image.Resampling.LANCZOS)

    # Convert to NumPy array and add a batch dimension (1, H, W, C)
    image_array = array(image, dtype=float32)
    image_array = expand_dims(image_array, axis=0)

    # Transpose the array to match the model's channel order (1, C, H, W)
    image_array = transpose(image_array, (0, 3, 1, 2))

    # Normalize the pixel values (not strictly necessary for this model, but good practice)
    image_array = image_array / 255.0

    # Pass the preprocessed image through the feature extractor model
    embeddings_output = image_feature_extractor(constant(image_array))

    # Extract the final embedding from the pooler_output
    embeddings = embeddings_output.pooler_output

    return embeddings.numpy()


# πŸ“Œ MAIN PREDICTION FUNCTION
def predict(
    mode: str, text: Optional[str], image_path: Optional[str]
) -> Dict[str, Any]:
    """
    Predicts the category of a product based on the selected mode.

    Args:
        mode (str): The prediction mode ("Multimodal", "Text Only", "Image Only").
        text (Optional[str]): The product description text.
        image_path (Optional[str]): The file path to the product image.

    Returns:
        Dict[str, Any]: A dictionary of class labels and their corresponding
                        prediction probabilities. Returns an empty dictionary
                        if the mode is invalid.
    """
    # Generate embeddings for both inputs
    text_emb = get_text_embeddings(text)
    image_emb = get_image_embeddings(image_path)

    # Get predictions based on the selected mode
    if mode == "Multimodal":
        predictions = multimodal_model.predict([text_emb, image_emb])
    elif mode == "Text Only":
        predictions = text_model.predict(text_emb)
    elif mode == "Image Only":
        predictions = image_model.predict(image_emb)
    else:
        # Return an empty dictionary if the mode is not recognized
        return {}

    # Format the output into a dictionary with labels and probabilities
    # The model's output is a 2D array, so we take the first row (index 0)
    prediction_dict_raw = dict(zip(CLASS_LABELS, predictions[0]))

    #  Map the raw IDs to human-readable names
    prediction_dict_mapped = {}
    for class_id, probability in prediction_dict_raw.items():
        # Get the human-readable name, defaulting to the raw ID if not found
        category_name = CATEGORY_MAP.get(class_id, class_id)
        prediction_dict_mapped[category_name] = probability

    # Sort the dictionary by probability in descending order for a cleaner display
    sorted_predictions = dict(
        sorted(prediction_dict_mapped.items(), key=lambda item: item[1], reverse=True)
    )

    return sorted_predictions