File size: 8,024 Bytes
5309153
 
 
 
941f5e0
5309153
 
 
 
 
fe59685
 
 
 
5309153
fe59685
 
5309153
 
fe59685
 
 
5309153
fe59685
 
 
 
 
 
 
 
 
 
 
5309153
fe59685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5309153
 
fe59685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5309153
 
fe59685
 
 
 
 
5309153
fe59685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5309153
fe59685
5309153
fe59685
 
 
 
 
 
5309153
fe59685
 
 
 
5309153
fe59685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import pandas as pd
import numpy as np
from datetime import datetime
from data import extract_model_data
from utils import COLORS
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go

def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
    empty_fig = lambda title: go.Figure().update_layout(title=title, height=500, 
        font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000', 
        plot_bgcolor='#1a1a1a', margin=dict(b=130)) or go.Figure()
    
    if historical_df.empty or 'date' not in historical_df.columns:
        ef = empty_fig("No historical data available")
        return {'failure_rates': ef, 'amd_tests': ef, 'nvidia_tests': ef}
    
    daily_stats = []
    for date in sorted(historical_df['date'].unique()):
        dd = historical_df[historical_df['date'] == date]
        counts = {'date': date}
        
        for platform in ['amd', 'nvidia']:
            tot_tests = tot_fails = p = f = s = 0
            for _, row in dd.iterrows():
                stats = extract_model_data(row)[0 if platform == 'amd' else 1]
                tot = stats['passed'] + stats['failed'] + stats['error']
                if tot > 0:
                    tot_tests += tot
                    tot_fails += stats['failed'] + stats['error']
                p += stats['passed']
                f += stats['failed'] + stats['error']
                s += stats['skipped']
            
            counts.update({f'{platform}_failure_rate': (tot_fails / tot_tests * 100) if tot_tests > 0 else 0,
                          f'{platform}_passed': p, f'{platform}_failed': f, f'{platform}_skipped': s})
        daily_stats.append(counts)
    
    fr_data = []
    for i, s in enumerate(daily_stats):
        for p in ['amd', 'nvidia']:
            chg = s[f'{p}_failure_rate'] - daily_stats[i-1][f'{p}_failure_rate'] if i > 0 else 0
            fr_data.append({'date': s['date'], 'failure_rate': s[f'{p}_failure_rate'], 
                           'platform': p.upper(), 'change': chg})
    
    def build_test_data(platform):
        data = []
        for i, s in enumerate(daily_stats):
            for tt in ['passed', 'failed', 'skipped']:
                chg = s[f'{platform}_{tt}'] - daily_stats[i-1][f'{platform}_{tt}'] if i > 0 else 0
                data.append({'date': s['date'], 'count': s[f'{platform}_{tt}'], 
                           'test_type': tt.capitalize(), 'change': chg})
        return pd.DataFrame(data)
    
    fr_df = pd.DataFrame(fr_data)
    
    fig_fr = go.Figure()
    for p, lc, mc in [('NVIDIA', '#76B900', '#FFFFFF'), ('AMD', '#ED1C24', '#404040')]:
        d = fr_df[fr_df['platform'] == p]
        if not d.empty:
            fig_fr.add_trace(go.Scatter(x=d['date'], y=d['failure_rate'], mode='lines+markers',
                name=p, line=dict(color=lc, width=3), 
                marker=dict(size=12, color=mc, line=dict(color=lc, width=2)),
                hovertemplate=f'<b>{p}</b><br>Date: %{{x}}<br>Failure Rate: %{{y:.2f}}%<extra></extra>'))
    
    fig_fr.update_layout(title="Overall Failure Rates Over Time", height=500,
        font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000', plot_bgcolor='#1a1a1a',
        title_font_size=20, legend=dict(font=dict(size=16), bgcolor='rgba(0,0,0,0.5)', 
        orientation="h", yanchor="bottom", y=-0.4, xanchor="center", x=0.5),
        xaxis=dict(title='Date', title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
        yaxis=dict(title='Failure Rate (%)', title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
        hovermode='x unified', margin=dict(b=130))
    
    def create_line_fig(df, title):
        fig = px.line(df, x='date', y='count', color='test_type',
            color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
            title=title, labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'})
        fig.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3))
        fig.update_layout(height=500, font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
            plot_bgcolor='#1a1a1a', title_font_size=20, legend=dict(font=dict(size=16), 
            bgcolor='rgba(0,0,0,0.5)', orientation="h", yanchor="bottom", y=-0.4, xanchor="center", x=0.5),
            xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
            yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
            hovermode='x unified', margin=dict(b=130))
        return fig
    
    return {'failure_rates': fig_fr, 
            'amd_tests': create_line_fig(build_test_data('amd'), "AMD Test Results Over Time"),
            'nvidia_tests': create_line_fig(build_test_data('nvidia'), "NVIDIA Test Results Over Time")}

def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict:
    def empty_figs():
        ef = lambda plat: go.Figure().update_layout(title=f"{model_name.upper()} - {plat} Results Over Time",
            height=500, font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
            plot_bgcolor='#1a1a1a', margin=dict(b=130)) or go.Figure()
        return {'amd_plot': ef('AMD'), 'nvidia_plot': ef('NVIDIA')}
    
    if historical_df.empty or 'date' not in historical_df.columns:
        return empty_figs()
    
    md = historical_df[historical_df.index.str.lower() == model_name.lower()]
    if md.empty:
        return empty_figs()
    
    dates = sorted(md['date'].unique())
    
    def build_data(platform):
        data = []
        for i, date in enumerate(dates):
            dd = md[md['date'] == date]
            if dd.empty:
                continue
            r = dd.iloc[0]
            passed = r.get(f'success_{platform}', 0)
            failed = r.get(f'failed_multi_no_{platform}', 0) + r.get(f'failed_single_no_{platform}', 0)
            skipped = r.get(f'skipped_{platform}', 0)
            
            pc = fc = sc = 0
            if i > 0:
                prev_dd = md[md['date'] == dates[i-1]]
                if not prev_dd.empty:
                    pr = prev_dd.iloc[0]
                    pc = pr.get(f'success_{platform}', 0)
                    fc = pr.get(f'failed_multi_no_{platform}', 0) + pr.get(f'failed_single_no_{platform}', 0)
                    sc = pr.get(f'skipped_{platform}', 0)
            
            data.extend([
                {'date': date, 'count': passed, 'test_type': 'Passed', 'change': passed - pc},
                {'date': date, 'count': failed, 'test_type': 'Failed', 'change': failed - fc},
                {'date': date, 'count': skipped, 'test_type': 'Skipped', 'change': skipped - sc}
            ])
        return pd.DataFrame(data)
    
    def create_fig(df, platform):
        fig = px.line(df, x='date', y='count', color='test_type',
            color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
            title=f"{model_name.upper()} - {platform} Results Over Time",
            labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'})
        fig.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3))
        fig.update_layout(height=500, font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
            plot_bgcolor='#1a1a1a', title_font_size=20, legend=dict(font=dict(size=16),
            bgcolor='rgba(0,0,0,0.5)', orientation="h", yanchor="bottom", y=-0.4, xanchor="center", x=0.5),
            xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
            yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
            hovermode='x unified', margin=dict(b=130))
        return fig
    
    return {'amd_plot': create_fig(build_data('amd'), 'AMD'),
            'nvidia_plot': create_fig(build_data('nvidia'), 'NVIDIA')}