File size: 8,024 Bytes
5309153 941f5e0 5309153 fe59685 5309153 fe59685 5309153 fe59685 5309153 fe59685 5309153 fe59685 5309153 fe59685 5309153 fe59685 5309153 fe59685 5309153 fe59685 5309153 fe59685 5309153 fe59685 5309153 fe59685 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import pandas as pd
import numpy as np
from datetime import datetime
from data import extract_model_data
from utils import COLORS
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
empty_fig = lambda title: go.Figure().update_layout(title=title, height=500,
font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a', margin=dict(b=130)) or go.Figure()
if historical_df.empty or 'date' not in historical_df.columns:
ef = empty_fig("No historical data available")
return {'failure_rates': ef, 'amd_tests': ef, 'nvidia_tests': ef}
daily_stats = []
for date in sorted(historical_df['date'].unique()):
dd = historical_df[historical_df['date'] == date]
counts = {'date': date}
for platform in ['amd', 'nvidia']:
tot_tests = tot_fails = p = f = s = 0
for _, row in dd.iterrows():
stats = extract_model_data(row)[0 if platform == 'amd' else 1]
tot = stats['passed'] + stats['failed'] + stats['error']
if tot > 0:
tot_tests += tot
tot_fails += stats['failed'] + stats['error']
p += stats['passed']
f += stats['failed'] + stats['error']
s += stats['skipped']
counts.update({f'{platform}_failure_rate': (tot_fails / tot_tests * 100) if tot_tests > 0 else 0,
f'{platform}_passed': p, f'{platform}_failed': f, f'{platform}_skipped': s})
daily_stats.append(counts)
fr_data = []
for i, s in enumerate(daily_stats):
for p in ['amd', 'nvidia']:
chg = s[f'{p}_failure_rate'] - daily_stats[i-1][f'{p}_failure_rate'] if i > 0 else 0
fr_data.append({'date': s['date'], 'failure_rate': s[f'{p}_failure_rate'],
'platform': p.upper(), 'change': chg})
def build_test_data(platform):
data = []
for i, s in enumerate(daily_stats):
for tt in ['passed', 'failed', 'skipped']:
chg = s[f'{platform}_{tt}'] - daily_stats[i-1][f'{platform}_{tt}'] if i > 0 else 0
data.append({'date': s['date'], 'count': s[f'{platform}_{tt}'],
'test_type': tt.capitalize(), 'change': chg})
return pd.DataFrame(data)
fr_df = pd.DataFrame(fr_data)
fig_fr = go.Figure()
for p, lc, mc in [('NVIDIA', '#76B900', '#FFFFFF'), ('AMD', '#ED1C24', '#404040')]:
d = fr_df[fr_df['platform'] == p]
if not d.empty:
fig_fr.add_trace(go.Scatter(x=d['date'], y=d['failure_rate'], mode='lines+markers',
name=p, line=dict(color=lc, width=3),
marker=dict(size=12, color=mc, line=dict(color=lc, width=2)),
hovertemplate=f'<b>{p}</b><br>Date: %{{x}}<br>Failure Rate: %{{y:.2f}}%<extra></extra>'))
fig_fr.update_layout(title="Overall Failure Rates Over Time", height=500,
font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000', plot_bgcolor='#1a1a1a',
title_font_size=20, legend=dict(font=dict(size=16), bgcolor='rgba(0,0,0,0.5)',
orientation="h", yanchor="bottom", y=-0.4, xanchor="center", x=0.5),
xaxis=dict(title='Date', title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
yaxis=dict(title='Failure Rate (%)', title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
hovermode='x unified', margin=dict(b=130))
def create_line_fig(df, title):
fig = px.line(df, x='date', y='count', color='test_type',
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
title=title, labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'})
fig.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3))
fig.update_layout(height=500, font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a', title_font_size=20, legend=dict(font=dict(size=16),
bgcolor='rgba(0,0,0,0.5)', orientation="h", yanchor="bottom", y=-0.4, xanchor="center", x=0.5),
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
hovermode='x unified', margin=dict(b=130))
return fig
return {'failure_rates': fig_fr,
'amd_tests': create_line_fig(build_test_data('amd'), "AMD Test Results Over Time"),
'nvidia_tests': create_line_fig(build_test_data('nvidia'), "NVIDIA Test Results Over Time")}
def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict:
def empty_figs():
ef = lambda plat: go.Figure().update_layout(title=f"{model_name.upper()} - {plat} Results Over Time",
height=500, font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a', margin=dict(b=130)) or go.Figure()
return {'amd_plot': ef('AMD'), 'nvidia_plot': ef('NVIDIA')}
if historical_df.empty or 'date' not in historical_df.columns:
return empty_figs()
md = historical_df[historical_df.index.str.lower() == model_name.lower()]
if md.empty:
return empty_figs()
dates = sorted(md['date'].unique())
def build_data(platform):
data = []
for i, date in enumerate(dates):
dd = md[md['date'] == date]
if dd.empty:
continue
r = dd.iloc[0]
passed = r.get(f'success_{platform}', 0)
failed = r.get(f'failed_multi_no_{platform}', 0) + r.get(f'failed_single_no_{platform}', 0)
skipped = r.get(f'skipped_{platform}', 0)
pc = fc = sc = 0
if i > 0:
prev_dd = md[md['date'] == dates[i-1]]
if not prev_dd.empty:
pr = prev_dd.iloc[0]
pc = pr.get(f'success_{platform}', 0)
fc = pr.get(f'failed_multi_no_{platform}', 0) + pr.get(f'failed_single_no_{platform}', 0)
sc = pr.get(f'skipped_{platform}', 0)
data.extend([
{'date': date, 'count': passed, 'test_type': 'Passed', 'change': passed - pc},
{'date': date, 'count': failed, 'test_type': 'Failed', 'change': failed - fc},
{'date': date, 'count': skipped, 'test_type': 'Skipped', 'change': skipped - sc}
])
return pd.DataFrame(data)
def create_fig(df, platform):
fig = px.line(df, x='date', y='count', color='test_type',
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
title=f"{model_name.upper()} - {platform} Results Over Time",
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'})
fig.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3))
fig.update_layout(height=500, font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a', title_font_size=20, legend=dict(font=dict(size=16),
bgcolor='rgba(0,0,0,0.5)', orientation="h", yanchor="bottom", y=-0.4, xanchor="center", x=0.5),
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
hovermode='x unified', margin=dict(b=130))
return fig
return {'amd_plot': create_fig(build_data('amd'), 'AMD'),
'nvidia_plot': create_fig(build_data('nvidia'), 'NVIDIA')} |