File size: 49,744 Bytes
985f19d 2cc3e82 1aeff90 b0cabfb b9fc80b 1aeff90 b0cabfb a71c515 2a0a7c9 100d9b7 b0cabfb 2a0a7c9 b0cabfb c8c66c6 bbfec58 2a0a7c9 c8c66c6 3e12066 2a0a7c9 b0cabfb 2a0a7c9 b0cabfb 1aeff90 3e12066 c8c66c6 3e12066 2a0a7c9 c8c66c6 2a0a7c9 b0cabfb 2a0a7c9 b0cabfb 2cc3e82 b0cabfb c54a7a8 2cc3e82 b0cabfb 1aeff90 3e12066 1aeff90 b0cabfb 4f6d45a c54a7a8 b0cabfb 3e12066 c54a7a8 a5f6137 3e12066 c54a7a8 1aeff90 b9fc80b 1aeff90 b9fc80b 1aeff90 b9fc80b 1aeff90 0257e16 3e12066 b0cabfb 0257e16 b0cabfb 0257e16 b9fc80b 1aeff90 b9fc80b c54a7a8 b0cabfb c54a7a8 100d9b7 3e12066 0257e16 2a0a7c9 b9fc80b 1aeff90 b9fc80b c54a7a8 2a0a7c9 c54a7a8 b0cabfb 3e12066 b0cabfb 100d9b7 b0cabfb 3e12066 b0cabfb 3e12066 b0cabfb 100d9b7 3e12066 b0cabfb b9fc80b 3e12066 f735495 c54a7a8 b9fc80b f735495 b9fc80b 3e12066 b9fc80b 3e12066 c54a7a8 100d9b7 b9fc80b c54a7a8 3e12066 b9fc80b c54a7a8 3e12066 c54a7a8 b9fc80b 3e12066 b9fc80b c54a7a8 b9fc80b 1aeff90 b9fc80b 2a0a7c9 b9fc80b 3e12066 b9fc80b c54a7a8 b9fc80b b0cabfb c54a7a8 3e12066 c54a7a8 b9fc80b 100d9b7 b9fc80b c54a7a8 3e12066 b9fc80b c54a7a8 3e12066 c54a7a8 3e12066 c54a7a8 3e12066 c54a7a8 b9fc80b c54a7a8 3e12066 c54a7a8 100d9b7 b9fc80b c54a7a8 3e12066 1aeff90 c54a7a8 b9fc80b c54a7a8 b9fc80b b0cabfb 100d9b7 b9fc80b c54a7a8 b9fc80b c54a7a8 b0cabfb b9fc80b 1aeff90 b0cabfb 3e12066 b0cabfb 3e12066 b0cabfb 3e12066 b0cabfb 2cc3e82 b0cabfb 3e12066 2cc3e82 11f1e85 2cc3e82 11f1e85 2cc3e82 a5f6137 db5e783 7411ec8 0d25d2a 2716e64 0d25d2a 7411ec8 db5e783 c1aab1a 255f7e6 0d25d2a a71c515 0d25d2a 2716e64 a71c515 2716e64 255f7e6 2716e64 255f7e6 0d25d2a 255f7e6 7411ec8 2cc3e82 ff8714f ade6b4d 100d9b7 ade6b4d 100d9b7 ade6b4d 100d9b7 ade6b4d 4f6d45a ff8714f bbfec58 ff8714f bbfec58 ff8714f 2933d9b 985f19d 2cc3e82 985f19d 100d9b7 b0cabfb 2933d9b 100d9b7 ade6b4d 4f6d45a bbfec58 a71c515 bbfec58 ddcd05d d193c16 7411ec8 d193c16 985f19d c8c66c6 985f19d b0cabfb d193c16 a5f6137 d193c16 04a0a1c d193c16 04a0a1c d193c16 04a0a1c d193c16 a5f6137 a71c515 d193c16 ff8714f 985f19d 04a0a1c 985f19d ff8714f 985f19d 04a0a1c ff8714f d193c16 ff8714f 985f19d ff8714f 985f19d 04a0a1c 985f19d ff8714f 985f19d ff8714f 985f19d 2cc3e82 ff8714f 2cc3e82 2933d9b ade6b4d 3e12066 985f19d ade6b4d 04a0a1c ade6b4d 100d9b7 ade6b4d b0cabfb 2a0a7c9 b0cabfb 2a0a7c9 f735495 b0cabfb 3e12066 2a0a7c9 b0cabfb b9fc80b c54a7a8 3e12066 1aeff90 c54a7a8 b9fc80b c54a7a8 2a0a7c9 c54a7a8 b9fc80b c54a7a8 b0cabfb b9fc80b c54a7a8 3e12066 c54a7a8 b0cabfb c54a7a8 1aeff90 0257e16 b9fc80b b0cabfb 2a0a7c9 b0cabfb 3e12066 b0cabfb c54a7a8 b9fc80b 3e12066 c54a7a8 b0cabfb c54a7a8 a68cd78 f735495 a68cd78 3e12066 a68cd78 3e12066 c54a7a8 100d9b7 a68cd78 c54a7a8 3e12066 a68cd78 c54a7a8 3e12066 c54a7a8 3e12066 2a0a7c9 1aeff90 b0cabfb 3e12066 b0cabfb 3e12066 b0cabfb 985f19d 2cc3e82 b0cabfb 100d9b7 3e12066 b0cabfb 985f19d b0cabfb 2cc3e82 985f19d b0cabfb 2a0a7c9 b0cabfb 2cc3e82 2a0a7c9 b0cabfb 2a0a7c9 f735495 2a0a7c9 7411ec8 99ee02b db5e783 7411ec8 2a0a7c9 db5e783 985f19d db5e783 985f19d db5e783 985f19d bbfec58 a5f6137 2933d9b bbfec58 7411ec8 b0cabfb 3e12066 2a0a7c9 b0cabfb c8c66c6 3e12066 2a0a7c9 3e12066 985f19d bbfec58 985f19d 2a0a7c9 3e12066 2a0a7c9 bbfec58 3e12066 b0cabfb 2a0a7c9 3e12066 1aeff90 b0cabfb 2a0a7c9 3e12066 b0cabfb 2a0a7c9 b0cabfb 2a0a7c9 c54a7a8 3e12066 b9fc80b 3e12066 2a0a7c9 b0cabfb b9fc80b b0cabfb b9fc80b b0cabfb c54a7a8 1aeff90 b0cabfb b9fc80b 3e12066 b9fc80b 3e12066 c54a7a8 b9fc80b c54a7a8 3e12066 c54a7a8 3e12066 c54a7a8 3e12066 c54a7a8 b0cabfb b9fc80b b0cabfb c54a7a8 b9fc80b b0cabfb b9fc80b b0cabfb b9fc80b c54a7a8 b9fc80b b0cabfb b9fc80b 04a0a1c a5f6137 04a0a1c 2716e64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 |
# app.py — Rolo: RT-DETRv2-only (Supervisely) trainer with auto COCO conversion & safe config patching
import os, sys, subprocess, shutil, stat, yaml, gradio as gr, re, random, logging, requests, json, base64, time, pathlib, tempfile, textwrap
from urllib.parse import urlparse
from glob import glob
from threading import Thread
from queue import Queue
import pandas as pd
import matplotlib.pyplot as plt
from roboflow import Roboflow
from PIL import Image
import torch
from string import Template # <-- used by the shim
# Quiet some noisy libs on Spaces (harmless locally)
os.environ.setdefault("YOLO_CONFIG_DIR", "/tmp/Ultralytics")
os.environ.setdefault("WANDB_DISABLED", "true")
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
REPO_URL = "https://github.com/supervisely-ecosystem/RT-DETRv2"
REPO_DIR = os.path.join(os.getcwd(), "third_party", "RT-DETRv2")
PY_IMPL_DIR = os.path.join(REPO_DIR, "rtdetrv2_pytorch") # Supervisely keeps PyTorch impl here
# Core deps — Ultralytics removed per request
COMMON_REQUIREMENTS = [
"gradio>=4.36.1",
"roboflow>=1.1.28",
"requests>=2.31.0",
"huggingface_hub>=0.22.0",
"pandas>=2.0.0",
"matplotlib>=3.7.0",
"torch>=2.0.1",
"torchvision>=0.15.2",
"pyyaml>=6.0.1",
"Pillow>=10.0.0",
"supervisely>=6.0.0",
"tensorboard>=2.13.0",
"pycocotools>=2.0.7",
]
# === bootstrap (clone + pip) ===================================================
def pip_install(args):
logging.info(f"pip install {' '.join(args)}")
subprocess.check_call([sys.executable, "-m", "pip", "install"] + args)
def ensure_repo_and_requirements():
os.makedirs(os.path.dirname(REPO_DIR), exist_ok=True)
if not os.path.exists(REPO_DIR):
logging.info(f"Cloning RT-DETRv2 repo to {REPO_DIR} ...")
subprocess.check_call(["git", "clone", "--depth", "1", REPO_URL, REPO_DIR])
else:
try:
subprocess.check_call(["git", "-C", REPO_DIR, "pull", "--ff-only"])
except Exception:
logging.warning("git pull failed; continuing with current checkout")
# On HF Spaces: expect requirements.txt to be used at build time; skip heavy runtime installs
if os.getenv("HF_SPACE") == "1" or os.getenv("SPACE_ID"):
logging.info("Detected Hugging Face Space — skipping runtime pip installs.")
return
# Local fallback (non-Spaces)
pip_install(COMMON_REQUIREMENTS)
req_file = os.path.join(PY_IMPL_DIR, "requirements.txt")
if os.path.exists(req_file):
pip_install(["-r", req_file])
try:
import supervisely # noqa: F401
except Exception:
logging.warning("supervisely not importable after first pass; retrying install…")
pip_install(["supervisely>=6.0.0"])
try:
ensure_repo_and_requirements()
except Exception:
logging.exception("Bootstrap failed, UI will still load so you can see errors")
# === model choices (restricted to Supervisely RT-DETRv2) ======================
MODEL_CHOICES = [
("rtdetrv2_s", "S (r18vd, 120e) — default"),
("rtdetrv2_m", "M (r34vd, 120e)"),
("rtdetrv2_msp", "M* (r50vd_m, 7x)"),
("rtdetrv2_l", "L (r50vd, 6x)"),
("rtdetrv2_x", "X (r101vd, 6x)"),
]
DEFAULT_MODEL_KEY = "rtdetrv2_s"
CONFIG_PATHS = {
"rtdetrv2_s": "rtdetrv2_pytorch/configs/rtdetrv2/rtdetrv2_r18vd_120e_coco.yml",
"rtdetrv2_m": "rtdetrv2_pytorch/configs/rtdetrv2/rtdetrv2_r34vd_120e_coco.yml",
"rtdetrv2_msp": "rtdetrv2_pytorch/configs/rtdetrv2/rtdetrv2_r50vd_m_7x_coco.yml",
"rtdetrv2_l": "rtdetrv2_pytorch/configs/rtdetrv2/rtdetrv2_r50vd_6x_coco.yml",
"rtdetrv2_x": "rtdetrv2_pytorch/configs/rtdetrv2/rtdetrv2_r101vd_6x_coco.yml",
}
CKPT_URLS = {
"rtdetrv2_s": "https://github.com/lyuwenyu/storage/releases/download/v0.2/rtdetrv2_r18vd_120e_coco_rerun_48.1.pth",
"rtdetrv2_m": "https://github.com/lyuwenyu/storage/releases/download/v0.1/rtdetrv2_r34vd_120e_coco_ema.pth",
"rtdetrv2_msp": "https://github.com/lyuwenyu/storage/releases/download/v0.1/rtdetrv2_r50vd_m_7x_coco_ema.pth",
"rtdetrv2_l": "https://github.com/lyuwenyu/storage/releases/download/v0.1/rtdetrv2_r50vd_6x_coco_ema.pth",
"rtdetrv2_x": "https://github.com/lyuwenyu/storage/releases/download/v0.1/rtdetrv2_r101vd_6x_coco_from_paddle.pth",
}
# === utilities ================================================================
def handle_remove_readonly(func, path, exc_info):
try:
os.chmod(path, stat.S_IWRITE)
except Exception:
pass
func(path)
_ROBO_URL_RX = re.compile(r"""
^(?:
(?:https?://)?(?:universe|app|www)?\.?roboflow\.com/
(?P<ws>[A-Za-z0-9\-_]+)/(?P<proj>[A-Za-z0-9\-_]+)/?(?:(?:dataset/[^/]+/)?(?:v?(?P<ver>\d+))?)?
|
(?P<ws2>[A-Za-z0-9\-_]+)/(?P<proj2>[A-Za-z0-9\-_]+)(?:/(?:v)?(?P<ver2>\d+))?
)$
""", re.VERBOSE | re.IGNORECASE)
def parse_roboflow_url(s: str):
s = s.strip()
m = _ROBO_URL_RX.match(s)
if m:
ws = m.group('ws') or m.group('ws2')
proj = m.group('proj') or m.group('proj2')
ver = m.group('ver') or m.group('ver2')
return ws, proj, (int(ver) if ver else None)
parsed = urlparse(s)
parts = [p for p in parsed.path.strip('/').split('/') if p]
if len(parts) >= 2:
version = None
if len(parts) >= 3:
v = parts[2]
if v.lower().startswith('v') and v[1:].isdigit():
version = int(v[1:])
elif v.isdigit():
version = int(v)
return parts[0], parts[1], version
if '/' in s and 'roboflow' not in s:
p = s.split('/')
if len(p) >= 2:
version = None
if len(p) >= 3:
v = p[2]
if v.lower().startswith('v') and v[1:].isdigit():
version = int(v[1:])
elif v.isdigit():
version = int(v)
return p[0], p[1], version
return None, None, None
def get_latest_version(api_key, workspace, project):
try:
rf = Roboflow(api_key=api_key)
proj = rf.workspace(workspace).project(project)
versions = sorted([int(v.version) for v in proj.versions()], reverse=True)
return versions[0] if versions else None
except Exception as e:
logging.error(f"Could not get latest version for {workspace}/{project}: {e}")
return None
def _extract_class_names(data_yaml):
names = data_yaml.get('names', None)
if isinstance(names, dict):
def _k(x):
try:
return int(x)
except Exception:
return str(x)
keys = sorted(names.keys(), key=_k)
names_list = [names[k] for k in keys]
elif isinstance(names, list):
names_list = names
else:
nc = int(data_yaml.get('nc', 0) or 0)
names_list = [f"class_{i}" for i in range(nc)]
return [str(x) for x in names_list]
def download_dataset(api_key, workspace, project, version):
try:
rf = Roboflow(api_key=api_key)
proj = rf.workspace(workspace).project(project)
ver = proj.version(int(version))
dataset = ver.download("yolov8") # labels in YOLO format (we'll convert to COCO)
data_yaml_path = os.path.join(dataset.location, 'data.yaml')
with open(data_yaml_path, 'r', encoding="utf-8") as f:
data_yaml = yaml.safe_load(f)
class_names = _extract_class_names(data_yaml)
splits = [s for s in ['train', 'valid', 'test'] if os.path.exists(os.path.join(dataset.location, s))]
return dataset.location, class_names, splits, f"{project}-v{version}"
except Exception as e:
logging.error(f"Failed to download {workspace}/{project}/v{version}: {e}")
return None, [], [], None
def label_path_for(img_path: str) -> str:
split_dir = os.path.dirname(os.path.dirname(img_path))
base = os.path.splitext(os.path.basename(img_path))[0] + '.txt'
return os.path.join(split_dir, 'labels', base)
# === YOLOv8 -> COCO converter =================================================
def yolo_to_coco(split_dir_images, split_dir_labels, class_names, out_json):
images, annotations = [], []
categories = [{"id": i, "name": n} for i, n in enumerate(class_names)]
ann_id = 1
img_id = 1
for fname in sorted(os.listdir(split_dir_images)):
if not fname.lower().endswith((".jpg", ".jpeg", ".png")):
continue
img_path = os.path.join(split_dir_images, fname)
try:
with Image.open(img_path) as im:
w, h = im.size
except Exception:
continue
images.append({"id": img_id, "file_name": fname, "width": w, "height": h})
label_file = os.path.join(split_dir_labels, os.path.splitext(fname)[0] + ".txt")
if os.path.exists(label_file):
with open(label_file, "r", encoding="utf-8") as f:
for line in f:
parts = line.strip().split()
if len(parts) < 5:
continue
try:
cls = int(float(parts[0]))
cx, cy, bw, bh = map(float, parts[1:5])
except Exception:
continue
x = max(0.0, (cx - bw / 2.0) * w)
y = max(0.0, (cy - bh / 2.0) * h)
ww = max(1.0, bw * w)
hh = max(1.0, bh * h)
if x + ww > w:
ww = max(1.0, w - x)
if y + hh > h:
hh = max(1.0, h - y)
annotations.append({
"id": ann_id,
"image_id": img_id,
"category_id": cls,
"bbox": [x, y, ww, hh],
"area": max(1.0, ww * hh),
"iscrowd": 0,
"segmentation": []
})
ann_id += 1
img_id += 1
coco = {"images": images, "annotations": annotations, "categories": categories}
os.makedirs(os.path.dirname(out_json), exist_ok=True)
with open(out_json, "w", encoding="utf-8") as f:
json.dump(coco, f)
def make_coco_annotations(merged_dir, class_names):
ann_dir = os.path.join(merged_dir, "annotations")
os.makedirs(ann_dir, exist_ok=True)
mapping = {"train": "instances_train.json", "valid": "instances_val.json", "test": "instances_test.json"}
for split, outname in mapping.items():
img_dir = os.path.join(merged_dir, split, "images")
lbl_dir = os.path.join(merged_dir, split, "labels")
out_json = os.path.join(ann_dir, outname)
if os.path.exists(img_dir) and os.listdir(img_dir):
yolo_to_coco(img_dir, lbl_dir, class_names, out_json)
return ann_dir
# === dataset merging ==========================================================
def gather_class_counts(dataset_info, class_mapping):
if not dataset_info:
return {}
final_names = set(v for v in class_mapping.values() if v is not None)
counts = {name: 0 for name in final_names}
for loc, names, splits, _ in dataset_info:
id_to_name = {idx: class_mapping.get(n, None) for idx, n in enumerate(names)}
for split in splits:
labels_dir = os.path.join(loc, split, 'labels')
if not os.path.exists(labels_dir):
continue
for label_file in os.listdir(labels_dir):
if not label_file.endswith('.txt'):
continue
found = set()
with open(os.path.join(labels_dir, label_file), 'r', encoding="utf-8") as f:
for line in f:
parts = line.strip().split()
if not parts:
continue
try:
cls_id = int(parts[0])
mapped = id_to_name.get(cls_id, None)
if mapped:
found.add(mapped)
except Exception:
continue
for m in found:
counts[m] += 1
return counts
def finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress=gr.Progress()):
merged_dir = 'rolo_merged_dataset'
if os.path.exists(merged_dir):
shutil.rmtree(merged_dir, onerror=handle_remove_readonly)
progress(0, desc="Creating directories...")
for split in ['train', 'valid', 'test']:
os.makedirs(os.path.join(merged_dir, split, 'images'), exist_ok=True)
os.makedirs(os.path.join(merged_dir, split, 'labels'), exist_ok=True)
active_classes = sorted({cls for cls, limit in class_limits.items() if limit > 0})
final_class_map = {name: i for i, name in enumerate(active_classes)}
all_images = []
for loc, _, splits, _ in dataset_info:
for split in splits:
img_dir = os.path.join(loc, split, 'images')
if not os.path.exists(img_dir):
continue
for img_file in os.listdir(img_dir):
if img_file.lower().endswith(('.jpg', '.jpeg', '.png')):
all_images.append((os.path.join(img_dir, img_file), split, loc))
random.shuffle(all_images)
progress(0.2, desc="Selecting images based on limits...")
selected_images, current_counts = [], {cls: 0 for cls in active_classes}
loc_to_names = {info[0]: info[1] for info in dataset_info}
for img_path, split, source_loc in progress.tqdm(all_images, desc="Analyzing images"):
lbl_path = label_path_for(img_path)
if not os.path.exists(lbl_path):
continue
source_names = loc_to_names.get(source_loc, [])
image_classes = set()
with open(lbl_path, 'r', encoding="utf-8") as f:
for line in f:
parts = line.strip().split()
if not parts:
continue
try:
cls_id = int(parts[0])
orig = source_names[cls_id]
mapped = class_mapping.get(orig, orig)
if mapped in active_classes:
image_classes.add(mapped)
except Exception:
continue
if not image_classes:
continue
if any(current_counts[c] >= class_limits[c] for c in image_classes):
continue
selected_images.append((img_path, split))
for c in image_classes:
current_counts[c] += 1
progress(0.6, desc=f"Copying {len(selected_images)} files...")
for img_path, split in progress.tqdm(selected_images, desc="Finalizing files"):
lbl_path = label_path_for(img_path)
out_img = os.path.join(merged_dir, split, 'images', os.path.basename(img_path))
out_lbl = os.path.join(merged_dir, split, 'labels', os.path.basename(lbl_path))
shutil.copy(img_path, out_img)
source_loc = None
for info in dataset_info:
if img_path.startswith(info[0]):
source_loc = info[0]
break
source_names = loc_to_names.get(source_loc, [])
with open(lbl_path, 'r', encoding="utf-8") as f_in, open(out_lbl, 'w', encoding="utf-8") as f_out:
for line in f_in:
parts = line.strip().split()
if not parts:
continue
try:
old_id = int(parts[0])
original_name = source_names[old_id]
mapped_name = class_mapping.get(original_name, original_name)
if mapped_name in final_class_map:
new_id = final_class_map[mapped_name]
f_out.write(f"{new_id} {' '.join(parts[1:])}\n")
except Exception:
continue
progress(0.9, desc="Writing data.yaml + COCO annotations...")
with open(os.path.join(merged_dir, 'data.yaml'), 'w', encoding="utf-8") as f:
yaml.dump({
'path': os.path.abspath(merged_dir),
'train': 'train/images',
'val': 'valid/images',
'test': 'test/images',
'nc': len(active_classes),
'names': active_classes
}, f)
ann_dir = make_coco_annotations(merged_dir, active_classes)
progress(0.98, desc="Finalizing...")
return f"Dataset finalized with {len(selected_images)} images.", os.path.abspath(merged_dir)
# === entrypoint + config detection/generation =================================
def find_training_script(repo_root):
canonical = os.path.join(repo_root, "rtdetrv2_pytorch", "tools", "train.py")
if os.path.exists(canonical):
return canonical
candidates = []
for pat in ["**/tools/train.py", "**/train.py", "**/tools/train_net.py"]:
candidates.extend(glob(os.path.join(repo_root, pat), recursive=True))
def _score(p):
pl = p.replace("\\", "/").lower()
return (0 if "rtdetrv2_pytorch" in pl else 1, len(p))
candidates.sort(key=_score)
return candidates[0] if candidates else None
def find_model_config_template(model_key):
rel = CONFIG_PATHS.get(model_key)
if not rel:
return None
path = os.path.join(REPO_DIR, rel)
return path if os.path.exists(path) else None
def _set_first_existing_key(d: dict, keys: list, value, fallback_key: str | None = None):
for k in keys:
if k in d:
d[k] = value
return k
if fallback_key:
d[fallback_key] = value
return fallback_key
return None
def _set_first_existing_key_deep(cfg: dict, keys: list, value):
for scope in [cfg, cfg.get("model", {}), cfg.get("solver", {})]:
if isinstance(scope, dict):
for k in keys:
if k in scope:
scope[k] = value
return True
if "model" not in cfg or not isinstance(cfg["model"], dict):
cfg["model"] = {}
cfg["model"][keys[0]] = value
return True
def _install_supervisely_logger_shim():
root = pathlib.Path(tempfile.gettempdir()) / "sly_shim_pkg"
pkg_training = root / "supervisely" / "nn" / "training"
pkg_training.mkdir(parents=True, exist_ok=True)
for p in [root / "supervisely", root / "supervisely" / "nn", pkg_training]:
init_file = p / "__init__.py"
if not init_file.exists():
init_file.write_text("")
(pkg_training / "__init__.py").write_text(textwrap.dedent("""
class _TrainLogger:
def __init__(self): pass
def reset(self): pass
def log_metrics(self, metrics: dict, step: int | None = None): pass
def log_artifacts(self, *a, **k): pass
def log_image(self, *a, **k): pass
train_logger = _TrainLogger()
"""))
return str(root)
# ---- [!! CORRECTED !!] robust sitecustomize shim with lazy import hook --------------------
def _install_workspace_shim_v3(dest_dir: str, module_default: str = "rtdetrv2_pytorch.src"):
"""
sitecustomize shim that:
- patches workspace.create to handle dict-based component definitions,
- ensures cfg is a dict,
- injects cfg['_pymodule'] as a *module object*,
even if the target module is imported after sitecustomize runs.
"""
os.makedirs(dest_dir, exist_ok=True)
sc_path = os.path.join(dest_dir, "sitecustomize.py")
tmpl = Template(r"""
import os, sys, importlib, importlib.abc, importlib.util, importlib.machinery, types
MOD_DEFAULT = os.environ.get("RTDETR_PYMODULE", "$module_default") or "$module_default"
TARGET = "rtdetrv2_pytorch.src.core.workspace"
def _ensure_pymodule_object(cfg: dict):
pm = cfg.get("_pymodule", None)
if isinstance(pm, types.ModuleType):
return pm
name = (pm or "").strip() if isinstance(pm, str) else MOD_DEFAULT
if not name:
name = MOD_DEFAULT
try:
mod = importlib.import_module(name)
except Exception:
mod = importlib.import_module(MOD_DEFAULT)
cfg["_pymodule"] = mod
return mod
def _patch_ws(ws_mod):
if getattr(ws_mod, "__rolo_patched__", False):
return
_orig_create = ws_mod.create
# NEW, FIXED create function
def create(name, *args, **kwargs):
# Unify all config sources into one dictionary. The main config is often the second arg.
cfg = {}
if args and isinstance(args[0], dict):
cfg.update(args[0])
if 'cfg' in kwargs and isinstance(kwargs['cfg'], dict):
cfg.update(kwargs['cfg'])
_ensure_pymodule_object(cfg)
# The core of the fix: handle when the component itself is passed as a dict.
# This is what happens when the library tries to create the model.
if isinstance(name, dict):
component_params = name.copy()
type_name = component_params.pop('type', None)
if type_name is None:
# If no 'type' key, we can't proceed. Fall back to original to get the original error.
return _orig_create(name, *args, **kwargs)
# Merge the component's own parameters (like num_classes) into the main config.
cfg.update(component_params)
# Now, call the original `create` function the way it expects:
# with the component name as a string, and the full config.
return _orig_create(type_name, cfg=cfg)
# If 'name' was already a string (the normal case for solvers, etc.), proceed as expected.
return _orig_create(name, cfg=cfg)
ws_mod.create = create
ws_mod.__rolo_patched__ = True
def _try_patch_now():
try:
ws_mod = importlib.import_module(TARGET)
_patch_ws(ws_mod)
return True
except Exception:
return False
if not _try_patch_now():
class _RoloFinder(importlib.abc.MetaPathFinder):
def find_spec(self, fullname, path, target=None):
if fullname != TARGET:
return None
origin_spec = importlib.util.find_spec(fullname)
if origin_spec is None or origin_spec.loader is None:
return None
loader = origin_spec.loader
class _RoloLoader(importlib.abc.Loader):
def create_module(self, spec):
if hasattr(loader, "create_module"):
return loader.create_module(spec)
return None
def exec_module(self, module):
loader.exec_module(module)
try:
_patch_ws(module)
except Exception:
pass
spec = importlib.machinery.ModuleSpec(fullname, _RoloLoader(), origin=origin_spec.origin)
spec.submodule_search_locations = origin_spec.submodule_search_locations
return spec
sys.meta_path.insert(0, _RoloFinder())
""")
code = tmpl.substitute(module_default=module_default)
with open(sc_path, "w", encoding="utf-8") as f:
f.write(code)
return sc_path
def _ensure_checkpoint(model_key: str, out_dir: str) -> str | None:
url = CKPT_URLS.get(model_key)
if not url:
return None
os.makedirs(out_dir, exist_ok=True)
fname = os.path.join(out_dir, os.path.basename(url))
if os.path.exists(fname) and os.path.getsize(fname) > 0:
return fname
logging.info(f"Downloading pretrained checkpoint for {model_key} from {url}")
try:
with requests.get(url, stream=True, timeout=60) as r:
r.raise_for_status()
with open(fname, "wb") as f:
for chunk in r.iter_content(chunk_size=1024 * 1024):
if chunk:
f.write(chunk)
return fname
except Exception as e:
logging.warning(f"Could not fetch checkpoint: {e}")
try:
if os.path.exists(fname):
os.remove(fname)
except Exception:
pass
return None
# --- include absolutizer ------------------------------------------------------
def _absify_any_paths_deep(node, base_dir, include_keys=("base", "_base_", "BASE", "BASE_YAML",
"includes", "include", "BASES", "__include__")):
def _absify(s: str) -> str:
if os.path.isabs(s):
return s
if s.startswith("../") or s.endswith((".yml", ".yaml")):
return os.path.abspath(os.path.join(base_dir, s))
return s
if isinstance(node, dict):
for k in list(node.keys()):
v = node[k]
if k in include_keys:
if isinstance(v, str):
node[k] = _absify(v)
elif isinstance(v, list):
node[k] = [_absify(x) if isinstance(x, str) else x for x in v]
for k, v in list(node.items()):
if isinstance(v, (dict, list)):
_absify_any_paths_deep(v, base_dir, include_keys)
elif isinstance(v, str):
node[k] = _absify(v)
elif isinstance(node, list):
for i, v in enumerate(list(node)):
if isinstance(v, (dict, list)):
_absify_any_paths_deep(v, base_dir, include_keys)
elif isinstance(v, str):
node[i] = _absify(v)
# --- NEW: safe model field setters --------------------------------------------
def _set_num_classes_safely(cfg: dict, n: int):
def set_num_classes(node):
if not isinstance(node, dict):
return False
if "num_classes" in node:
node["num_classes"] = int(n)
return True
for k, v in node.items():
if isinstance(v, dict) and set_num_classes(v):
return True
return False
m = cfg.get("model", None)
if isinstance(m, dict):
if not set_num_classes(m):
m["num_classes"] = int(n)
return
if isinstance(m, str):
block = cfg.get(m, None)
if isinstance(block, dict):
if not set_num_classes(block):
block["num_classes"] = int(n)
return
cfg["num_classes"] = int(n)
def _maybe_set_model_field(cfg: dict, key: str, value):
m = cfg.get("model", None)
if isinstance(m, dict):
m[key] = value
return
if isinstance(m, str) and isinstance(cfg.get(m), dict):
cfg[m][key] = value
return
cfg[key] = value
# --- UPDATED: dataset override (+ keep includes) + sync_bn off ----------------
def patch_base_config(base_cfg_path, merged_dir, class_count, run_name,
epochs, batch, imgsz, lr, optimizer, pretrained_path: str | None):
if not base_cfg_path or not os.path.exists(base_cfg_path):
raise gr.Error("Could not locate a model config inside the RT-DETRv2 repo.")
template_dir = os.path.dirname(base_cfg_path)
# Load YAML then absolutize include-like paths (KEEP includes; do not prune)
with open(base_cfg_path, "r", encoding="utf-8") as f:
cfg = yaml.safe_load(f)
_absify_any_paths_deep(cfg, template_dir)
# Ensure the runtime knows which Python module hosts builders
cfg["task"] = cfg.get("task", "detection")
cfg["_pymodule"] = cfg.get("_pymodule", "rtdetrv2_pytorch.src") # <= hint for loader
# Disable SyncBN for single GPU/CPU runs; guard DDP flags
cfg["sync_bn"] = False
cfg.setdefault("device", "")
cfg["find_unused_parameters"] = False
ann_dir = os.path.join(merged_dir, "annotations")
paths = {
"train_json": os.path.abspath(os.path.join(ann_dir, "instances_train.json")),
"val_json": os.path.abspath(os.path.join(ann_dir, "instances_val.json")),
"test_json": os.path.abspath(os.path.join(ann_dir, "instances_test.json")),
"train_img": os.path.abspath(os.path.join(merged_dir, "train", "images")),
"val_img": os.path.abspath(os.path.join(merged_dir, "valid", "images")),
"test_img": os.path.abspath(os.path.join(merged_dir, "test", "images")),
"out_dir": os.path.abspath(os.path.join("runs", "train", run_name)),
}
def ensure_and_patch_dl(dl_key, img_key, json_key, default_shuffle):
block = cfg.get(dl_key)
if not isinstance(block, dict):
block = {
"type": "DataLoader",
"dataset": {
"type": "CocoDetection",
"img_folder": paths[img_key],
"ann_file": paths[json_key],
"return_masks": False,
"transforms": {
"type": "Compose",
"ops": [
{"type": "Resize", "size": [int(imgsz), int(imgsz)]},
{"type": "ConvertPILImage", "dtype": "float32", "scale": True},
],
},
},
"shuffle": bool(default_shuffle),
"num_workers": 2,
"drop_last": bool(dl_key == "train_dataloader"),
"collate_fn": {"type": "BatchImageCollateFunction"},
"total_batch_size": int(batch),
}
cfg[dl_key] = block
ds = block.get("dataset", {})
if isinstance(ds, dict):
ds["img_folder"] = paths[img_key]
ds["ann_file"] = paths[json_key]
for k in ("img_dir", "image_root", "data_root"):
if k in ds: ds[k] = paths[img_key]
for k in ("ann_path", "annotation", "annotations"):
if k in ds: ds[k] = paths[json_key]
block["dataset"] = ds
block["total_batch_size"] = int(batch)
block.setdefault("num_workers", 2)
block.setdefault("shuffle", bool(default_shuffle))
block.setdefault("drop_last", bool(dl_key == "train_dataloader"))
# ---- FORCE-FIX collate name typo even if it existed already
cf = block.get("collate_fn", {})
if isinstance(cf, dict):
t = str(cf.get("type", ""))
if t.lower() == "batchimagecollatefuncion" or "Funcion" in t:
cf["type"] = "BatchImageCollateFunction"
block["collate_fn"] = cf
else:
block["collate_fn"] = {"type": "BatchImageCollateFunction"}
ensure_and_patch_dl("train_dataloader", "train_img", "train_json", default_shuffle=True)
ensure_and_patch_dl("val_dataloader", "val_img", "val_json", default_shuffle=False)
_set_num_classes_safely(cfg, int(class_count))
applied_epoch = False
for key in ("epoches", "max_epoch", "epochs", "num_epochs"):
if key in cfg:
cfg[key] = int(epochs)
applied_epoch = True
break
if "solver" in cfg and isinstance(cfg["solver"], dict):
for key in ("epoches", "max_epoch", "epochs", "num_epochs"):
if key in cfg["solver"]:
cfg["solver"][key] = int(epochs)
applied_epoch = True
break
if not applied_epoch:
cfg["epoches"] = int(epochs)
cfg["input_size"] = int(imgsz)
if "solver" not in cfg or not isinstance(cfg["solver"], dict):
cfg["solver"] = {}
sol = cfg["solver"]
for key in ("base_lr", "lr", "learning_rate"):
if key in sol:
sol[key] = float(lr)
break
else:
sol["base_lr"] = float(lr)
sol["optimizer"] = str(optimizer).lower()
if "train_dataloader" not in cfg or not isinstance(cfg["train_dataloader"], dict):
sol["batch_size"] = int(batch)
if "output_dir" in cfg:
cfg["output_dir"] = paths["out_dir"]
else:
sol["output_dir"] = paths["out_dir"]
if pretrained_path:
p = os.path.abspath(pretrained_path)
_maybe_set_model_field(cfg, "pretrain", p)
_maybe_set_model_field(cfg, "pretrained", p)
if not cfg.get("model"):
cfg["model"] = {"type": "RTDETR", "num_classes": int(class_count)}
cfg_out_dir = os.path.join(template_dir, "generated")
os.makedirs(cfg_out_dir, exist_ok=True)
out_path = os.path.join(cfg_out_dir, f"{run_name}.yaml")
class _NoFlowDumper(yaml.SafeDumper): ...
def _repr_list_block(dumper, data):
return dumper.represent_sequence('tag:yaml.org,2002:seq', data, flow_style=False)
_NoFlowDumper.add_representer(list, _repr_list_block)
with open(out_path, "w", encoding="utf-8") as f:
yaml.dump(cfg, f, Dumper=_NoFlowDumper, sort_keys=False, allow_unicode=True)
return out_path
def find_best_checkpoint(out_dir):
pats = [
os.path.join(out_dir, "**", "best*.pt"),
os.path.join(out_dir, "**", "best*.pth"),
os.path.join(out_dir, "**", "model_best*.pt"),
os.path.join(out_dir, "**", "model_best*.pth"),
]
for p in pats:
f = sorted(glob(p, recursive=True))
if f:
return f[0]
any_ckpt = sorted(
glob(os.path.join(out_dir, "**", "*.pt"), recursive=True)
+ glob(os.path.join(out_dir, "**", "*.pth"), recursive=True)
)
return any_ckpt[-1] if any_ckpt else None
# === Gradio handlers ==========================================================
def load_datasets_handler(api_key, url_file, progress=gr.Progress()):
api_key = api_key or os.getenv("ROBOFLOW_API_KEY", "")
if not api_key:
raise gr.Error("Roboflow API Key is required (or set ROBOFLOW_API_KEY).")
if not url_file:
raise gr.Error("Upload a .txt with Roboflow URLs or 'workspace/project[/vN]' lines.")
with open(url_file.name, 'r', encoding='utf-8', errors='ignore') as f:
urls = [line.strip() for line in f if line.strip()]
dataset_info, failures = [], []
for i, raw in enumerate(urls):
progress((i + 1) / max(1, len(urls)), desc=f"Parsing {i+1}/{len(urls)}")
ws, proj, ver = parse_roboflow_url(raw)
if not (ws and proj):
failures.append((raw, "ParseError: could not resolve workspace/project"))
continue
if ver is None:
ver = get_latest_version(api_key, ws, proj)
if ver is None:
failures.append((raw, f"No latest version for {ws}/{proj}"))
continue
loc, names, splits, name_str = download_dataset(api_key, ws, proj, int(ver))
if loc:
dataset_info.append((loc, names, splits, name_str))
else:
failures.append((raw, f"DownloadError: {ws}/{proj}/v{ver}"))
if not dataset_info:
msg = "No datasets loaded.\n" + "\n".join([f"- {u}: {why}" for u, why in failures[:10]])
raise gr.Error(msg)
all_names = sorted({str(n) for _, names, _, _ in dataset_info for n in names})
class_map = {name: name for name in all_names}
counts = gather_class_counts(dataset_info, class_map)
df = pd.DataFrame([[n, n, counts.get(n, 0), False] for n in all_names],
columns=["Original Name", "Rename To", "Max Images", "Remove"])
status = "Datasets loaded successfully."
if failures:
status += f" ({len(dataset_info)} OK, {len(failures)} failed; see logs)."
return status, dataset_info, df
def update_class_counts_handler(class_df, dataset_info):
if class_df is None or not dataset_info:
return None
class_df = pd.DataFrame(class_df)
mapping = {row["Original Name"]: (None if bool(row["Remove"]) else row["Rename To"])
for _, row in class_df.iterrows()}
final_names = sorted(set(v for v in mapping.values() if v))
counts = {k: 0 for k in final_names}
for loc, names, splits, _ in dataset_info:
id_to_final = {idx: mapping.get(n, None) for idx, n in enumerate(names)}
for split in splits:
labels_dir = os.path.join(loc, split, 'labels')
if not os.path.exists(labels_dir):
continue
for label_file in os.listdir(labels_dir):
if not label_file.endswith('.txt'):
continue
found = set()
with open(os.path.join(labels_dir, label_file), 'r', encoding="utf-8") as f:
for line in f:
parts = line.strip().split()
if not parts:
continue
try:
cls_id = int(parts[0])
mapped = id_to_final.get(cls_id, None)
if mapped:
found.add(mapped)
except Exception:
continue
for m in found:
counts[m] += 1
return pd.DataFrame(list(counts.items()), columns=["Final Class Name", "Est. Total Images"])
def training_handler(dataset_path, model_key, run_name, epochs, batch, imgsz, lr, opt, progress=gr.Progress()):
if not dataset_path:
raise gr.Error("Finalize a dataset in Tab 2 before training.")
train_script = find_training_script(REPO_DIR)
logging.info(f"Resolved training script: {train_script}")
if not train_script:
raise gr.Error("RT-DETRv2 training script not found inside the repo (looked for **/tools/train.py).")
base_cfg = find_model_config_template(model_key)
if not base_cfg:
raise gr.Error("Could not find a matching RT-DETRv2 config in the repo (S/M/M*/L/X).")
data_yaml = os.path.join(dataset_path, "data.yaml")
with open(data_yaml, "r", encoding="utf-8") as f:
dy = yaml.safe_load(f)
class_names = [str(x) for x in dy.get("names", [])]
make_coco_annotations(dataset_path, class_names)
out_dir = os.path.abspath(os.path.join("runs", "train", run_name))
os.makedirs(out_dir, exist_ok=True)
pretrained_path = _ensure_checkpoint(model_key, out_dir)
cfg_path = patch_base_config(
base_cfg_path=base_cfg,
merged_dir=dataset_path,
class_count=len(class_names),
run_name=run_name,
epochs=epochs,
batch=batch,
imgsz=imgsz,
lr=lr,
optimizer=opt,
pretrained_path=pretrained_path,
)
cmd = [sys.executable, train_script, "-c", os.path.abspath(cfg_path)]
logging.info(f"Training command: {' '.join(cmd)}")
q = Queue()
def run_train():
try:
train_cwd = os.path.dirname(train_script)
shim_dir = tempfile.mkdtemp(prefix="rtdetr_site_")
_install_workspace_shim_v3(shim_dir, module_default="rtdetrv2_pytorch.src")
env = os.environ.copy()
sly_shim_root = _install_supervisely_logger_shim()
env["PYTHONPATH"] = os.pathsep.join(filter(None, [
shim_dir,
train_cwd,
PY_IMPL_DIR,
REPO_DIR,
sly_shim_root,
env.get("PYTHONPATH", "")
]))
env.setdefault("WANDB_DISABLED", "true")
env.setdefault("RTDETR_PYMODULE", "rtdetrv2_pytorch.src")
env.setdefault("PYTHONUNBUFFERED", "1")
if torch.cuda.is_available():
env.setdefault("CUDA_VISIBLE_DEVICES", "0")
proc = subprocess.Popen(cmd, cwd=train_cwd,
stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
bufsize=1, text=True, env=env)
for line in proc.stdout:
q.put(line.rstrip())
proc.wait()
q.put(f"__EXITCODE__:{proc.returncode}")
except Exception as e:
q.put(f"__ERROR__:{e}")
Thread(target=run_train, daemon=True).start()
log_tail, last_epoch, total_epochs = [], 0, int(epochs)
first_lines = []
line_no = 0
while True:
line = q.get()
if line.startswith("__EXITCODE__"):
code = int(line.split(":", 1)[1])
if code != 0:
head = "\n".join(first_lines[-200:])
raise gr.Error(f"Training exited with code {code}.\nLast output:\n{head or 'No logs captured.'}")
break
if line.startswith("__ERROR__"):
raise gr.Error(f"Training failed: {line.split(':', 1)[1]}")
if len(first_lines) < 2000:
first_lines.append(line)
log_tail.append(line)
log_tail = log_tail[-40:]
m = re.search(r"[Ee]poch\s+(\d+)\s*/\s*(\d+)", line)
if m:
try:
last_epoch = int(m.group(1))
total_epochs = max(total_epochs, int(m.group(2)))
except Exception:
pass
progress(min(max(last_epoch / max(1, total_epochs), 0.0), 1.0), desc=f"Epoch {last_epoch}/{total_epochs}")
line_no += 1
fig1 = fig2 = None
if line_no % 80 == 0:
fig1 = plt.figure()
plt.title("Loss (see logs)")
plt.plot([0, last_epoch], [0, 0])
plt.tight_layout()
fig2 = plt.figure()
plt.title("mAP (see logs)")
plt.plot([0, last_epoch], [0, 0])
plt.tight_layout()
yield "\n".join(log_tail), fig1, fig2, None
if fig1 is not None:
plt.close(fig1)
if fig2 is not None:
plt.close(fig2)
ckpt = find_best_checkpoint(out_dir) or find_best_checkpoint("runs")
if not ckpt or not os.path.exists(ckpt):
raise gr.Error("Training finished, but checkpoint file not found. Check logs/output directory.")
yield "Training complete!", None, None, gr.File.update(value=ckpt, visible=True)
def finalize_handler(dataset_info, class_df, progress=gr.Progress()):
if not dataset_info:
raise gr.Error("Load datasets first in Tab 1.")
if class_df is None:
raise gr.Error("Class data is missing.")
class_df = pd.DataFrame(class_df)
class_mapping, class_limits = {}, {}
for _, row in class_df.iterrows():
orig = row["Original Name"]
if bool(row["Remove"]):
continue
final_name = row["Rename To"]
class_mapping[orig] = final_name
class_limits[final_name] = class_limits.get(final_name, 0) + int(row["Max Images"])
status, path = finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress)
return status, path
def upload_handler(model_file, hf_token, hf_repo, gh_token, gh_repo, progress=gr.Progress()):
if not model_file:
raise gr.Error("No trained model file to upload.")
from huggingface_hub import HfApi, HfFolder
hf_status = "Skipped Hugging Face."
if hf_token and hf_repo:
progress(0, desc="Uploading to Hugging Face...")
try:
api = HfApi(); HfFolder.save_token(hf_token)
repo_url = api.create_repo(repo_id=hf_repo, exist_ok=True, token=hf_token)
api.upload_file(model_file.name, os.path.basename(model_file.name), repo_id=hf_repo, token=hf_token)
hf_status = f"Success! {repo_url}"
except Exception as e:
hf_status = f"Hugging Face Error: {e}"
gh_status = "Skipped GitHub."
if gh_token and gh_repo:
progress(0.5, desc="Uploading to GitHub...")
try:
if '/' not in gh_repo:
raise ValueError("GitHub repo must be 'username/repo'.")
username, repo_name = gh_repo.split('/')
api_url = f"https://api.github.com/repos/{username}/{repo_name}/contents/{os.path.basename(model_file.name)}"
headers = {"Authorization": f"token {gh_token}"}
with open(model_file.name, "rb") as f:
content = base64.b64encode(f.read()).decode()
get_resp = requests.get(api_url, headers=headers, timeout=30)
sha = get_resp.json().get('sha') if get_resp.ok else None
data = {"message": "Upload trained model from Rolo app", "content": content}
if sha:
data["sha"] = sha
put_resp = requests.put(api_url, headers=headers, json=data, timeout=60)
if put_resp.ok:
gh_status = f"Success! {put_resp.json()['content']['html_url']}"
else:
gh_status = f"GitHub Error: {put_resp.json().get('message','Unknown')}"
except Exception as e:
gh_status = f"GitHub Error: {e}"
progress(1)
return hf_status, gh_status
# === UI =======================================================================
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as app:
gr.Markdown("# Rolo — RT-DETRv2 Trainer (Supervisely repo only)")
dataset_info_state = gr.State([])
final_dataset_path_state = gr.State(None)
with gr.Tabs():
with gr.TabItem("1. Prepare Datasets"):
gr.Markdown("Upload a `.txt` with Roboflow URLs or `workspace/project[/vN]` per line. We’ll pull and merge them.")
with gr.Row():
rf_api_key = gr.Textbox(label="Roboflow API Key (or set ROBOFLOW_API_KEY)", type="password", scale=2)
rf_url_file = gr.File(label="Roboflow URLs (.txt)", file_types=[".txt"], scale=1)
load_btn = gr.Button("Load Datasets", variant="primary")
dataset_status = gr.Textbox(label="Status", interactive=False)
with gr.TabItem("2. Manage & Merge"):
gr.Markdown("Rename/merge/remove classes and set per-class image caps. Then finalize.")
with gr.Row():
class_df = gr.DataFrame(headers=["Original Name","Rename To","Max Images","Remove"],
datatype=["str","str","number","bool"], label="Class Config", interactive=True, scale=3)
with gr.Column(scale=1):
class_count_summary_df = gr.DataFrame(label="Merged Class Counts Preview",
headers=["Final Class Name","Est. Total Images"], interactive=False)
update_counts_btn = gr.Button("Update Counts")
finalize_btn = gr.Button("Finalize Merged Dataset", variant="primary")
finalize_status = gr.Textbox(label="Status", interactive=False)
with gr.TabItem("3. Configure & Train"):
gr.Markdown("Pick RT-DETRv2 model, set hyper-params, press Start.")
with gr.Row():
with gr.Column(scale=1):
# [UI IMPROVEMENT] Using (label, value) format for a better user experience
model_dd = gr.Dropdown(choices=[(label, value) for value, label in MODEL_CHOICES],
value=DEFAULT_MODEL_KEY,
label="Model (RT-DETRv2)")
run_name_tb = gr.Textbox(label="Run Name", value="rtdetrv2_run_1")
epochs_sl = gr.Slider(1, 500, 100, step=1, label="Epochs")
batch_sl = gr.Slider(1, 64, 16, step=1, label="Batch Size")
imgsz_num = gr.Number(label="Image Size", value=640)
lr_num = gr.Number(label="Learning Rate", value=0.001)
opt_dd = gr.Dropdown(["Adam","AdamW","SGD"], value="Adam", label="Optimizer")
train_btn = gr.Button("Start Training", variant="primary")
with gr.Column(scale=2):
train_status = gr.Textbox(label="Live Logs (tail)", interactive=False, lines=12)
loss_plot = gr.Plot(label="Loss")
map_plot = gr.Plot(label="mAP")
final_model_file = gr.File(label="Download Trained Checkpoint", interactive=False, visible=False)
with gr.TabItem("4. Upload Model"):
gr.Markdown("Optionally push your checkpoint to Hugging Face / GitHub.")
with gr.Row():
with gr.Column():
gr.Markdown("**Hugging Face**")
hf_token = gr.Textbox(label="HF Token", type="password")
hf_repo = gr.Textbox(label="HF Repo (user/repo)")
with gr.Column():
gr.Markdown("**GitHub**")
gh_token = gr.Textbox(label="GitHub PAT", type="password")
gh_repo = gr.Textbox(label="GitHub Repo (user/repo)")
upload_btn = gr.Button("Upload", variant="primary")
with gr.Row():
hf_status = gr.Textbox(label="Hugging Face Status", interactive=False)
gh_status = gr.Textbox(label="GitHub Status", interactive=False)
load_btn.click(load_datasets_handler, [rf_api_key, rf_url_file],
[dataset_status, dataset_info_state, class_df])
update_counts_btn.click(update_class_counts_handler, [class_df, dataset_info_state],
[class_count_summary_df])
finalize_btn.click(finalize_handler, [dataset_info_state, class_df],
[finalize_status, final_dataset_path_state])
train_btn.click(training_handler,
[final_dataset_path_state, model_dd, run_name_tb, epochs_sl, batch_sl, imgsz_num, lr_num, opt_dd],
[train_status, loss_plot, map_plot, final_model_file])
upload_btn.click(upload_handler, [final_model_file, hf_token, hf_repo, gh_token, gh_repo],
[hf_status, gh_status])
if __name__ == "__main__":
try:
ts = find_training_script(REPO_DIR)
logging.info(f"Startup check — training script at: {ts}")
except Exception as e:
logging.warning(f"Startup training-script check failed: {e}")
app.launch(debug=True) |