skills_go_to_github / trl /references /training_methods.md
evalstate
remove kto/ppo
eb23fb4
# TRL Training Methods Overview
TRL (Transformer Reinforcement Learning) provides multiple training methods for fine-tuning and aligning language models. This reference provides a brief overview of each method.
## Supervised Fine-Tuning (SFT)
**What it is:** Standard instruction tuning with supervised learning on demonstration data.
**When to use:**
- Initial fine-tuning of base models on task-specific data
- Teaching new capabilities or domains
- Most common starting point for fine-tuning
**Dataset format:** Conversational format with "messages" field, OR text field, OR prompt/completion pairs
**Example:**
```python
from trl import SFTTrainer, SFTConfig
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
args=SFTConfig(
output_dir="my-model",
push_to_hub=True,
hub_model_id="username/my-model",
eval_strategy="no", # Disable eval for simple example
)
)
trainer.train()
```
**Note:** For production training with evaluation monitoring, see `scripts/train_sft_example.py`
**Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/sft_trainer")`
## Direct Preference Optimization (DPO)
**What it is:** Alignment method that trains directly on preference pairs (chosen vs rejected responses) without requiring a reward model.
**When to use:**
- Aligning models to human preferences
- Improving response quality after SFT
- Have paired preference data (chosen/rejected responses)
**Dataset format:** Preference pairs with "chosen" and "rejected" fields
**Example:**
```python
from trl import DPOTrainer, DPOConfig
trainer = DPOTrainer(
model="Qwen/Qwen2.5-0.5B-Instruct", # Use instruct model
train_dataset=dataset,
args=DPOConfig(
output_dir="dpo-model",
beta=0.1, # KL penalty coefficient
eval_strategy="no", # Disable eval for simple example
)
)
trainer.train()
```
**Note:** For production training with evaluation monitoring, see `scripts/train_dpo_example.py`
**Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/dpo_trainer")`
## Group Relative Policy Optimization (GRPO)
**What it is:** Online RL method that optimizes relative to group performance, useful for tasks with verifiable rewards.
**When to use:**
- Tasks with automatic reward signals (code execution, math verification)
- Online learning scenarios
- When DPO offline data is insufficient
**Dataset format:** Prompt-only format (model generates responses, reward computed online)
**Example:**
```python
# Use TRL maintained script
hf_jobs("uv", {
"script": "https://raw.githubusercontent.com/huggingface/trl/main/examples/scripts/grpo.py",
"script_args": [
"--model_name_or_path", "Qwen/Qwen2.5-0.5B-Instruct",
"--dataset_name", "trl-lib/math_shepherd",
"--output_dir", "grpo-model"
],
"flavor": "a10g-large",
"timeout": "4h",
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
})
```
**Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/grpo_trainer")`
## Reward Modeling
**What it is:** Train a reward model to score responses, used as a component in RLHF pipelines.
**When to use:**
- Building RLHF pipeline
- Need automatic quality scoring
- Creating reward signals for PPO training
**Dataset format:** Preference pairs with "chosen" and "rejected" responses
**Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/reward_trainer")`
## Method Selection Guide
| Method | Complexity | Data Required | Use Case |
|--------|-----------|---------------|----------|
| **SFT** | Low | Demonstrations | Initial fine-tuning |
| **DPO** | Medium | Paired preferences | Post-SFT alignment |
| **GRPO** | Medium | Prompts + reward fn | Online RL with automatic rewards |
| **Reward** | Medium | Paired preferences | Building RLHF pipeline |
## Recommended Pipeline
**For most use cases:**
1. **Start with SFT** - Fine-tune base model on task data
2. **Follow with DPO** - Align to preferences using paired data
3. **Optional: GGUF conversion** - Deploy for local inference
**For advanced RL scenarios:**
1. **Start with SFT** - Fine-tune base model
2. **Train reward model** - On preference data
## Dataset Format Reference
For complete dataset format specifications, use:
```python
hf_doc_fetch("https://huggingface.co/docs/trl/dataset_formats")
```
Or validate your dataset:
```bash
uv run https://huggingface.co/datasets/mcp-tools/skills/raw/main/dataset_inspector.py \
--dataset your/dataset --split train
```
## See Also
- `references/training_patterns.md` - Common training patterns and examples
- `scripts/train_sft_example.py` - Complete SFT template
- `scripts/train_dpo_example.py` - Complete DPO template
- [Dataset Inspector](https://huggingface.co/datasets/mcp-tools/skills/raw/main/dataset_inspector.py) - Dataset format validation tool