| # TRL Training Methods Overview | |
| TRL (Transformer Reinforcement Learning) provides multiple training methods for fine-tuning and aligning language models. This reference provides a brief overview of each method. | |
| ## Supervised Fine-Tuning (SFT) | |
| **What it is:** Standard instruction tuning with supervised learning on demonstration data. | |
| **When to use:** | |
| - Initial fine-tuning of base models on task-specific data | |
| - Teaching new capabilities or domains | |
| - Most common starting point for fine-tuning | |
| **Dataset format:** Conversational format with "messages" field, OR text field, OR prompt/completion pairs | |
| **Example:** | |
| ```python | |
| from trl import SFTTrainer, SFTConfig | |
| trainer = SFTTrainer( | |
| model="Qwen/Qwen2.5-0.5B", | |
| train_dataset=dataset, | |
| args=SFTConfig( | |
| output_dir="my-model", | |
| push_to_hub=True, | |
| hub_model_id="username/my-model", | |
| eval_strategy="no", # Disable eval for simple example | |
| ) | |
| ) | |
| trainer.train() | |
| ``` | |
| **Note:** For production training with evaluation monitoring, see `scripts/train_sft_example.py` | |
| **Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/sft_trainer")` | |
| ## Direct Preference Optimization (DPO) | |
| **What it is:** Alignment method that trains directly on preference pairs (chosen vs rejected responses) without requiring a reward model. | |
| **When to use:** | |
| - Aligning models to human preferences | |
| - Improving response quality after SFT | |
| - Have paired preference data (chosen/rejected responses) | |
| **Dataset format:** Preference pairs with "chosen" and "rejected" fields | |
| **Example:** | |
| ```python | |
| from trl import DPOTrainer, DPOConfig | |
| trainer = DPOTrainer( | |
| model="Qwen/Qwen2.5-0.5B-Instruct", # Use instruct model | |
| train_dataset=dataset, | |
| args=DPOConfig( | |
| output_dir="dpo-model", | |
| beta=0.1, # KL penalty coefficient | |
| eval_strategy="no", # Disable eval for simple example | |
| ) | |
| ) | |
| trainer.train() | |
| ``` | |
| **Note:** For production training with evaluation monitoring, see `scripts/train_dpo_example.py` | |
| **Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/dpo_trainer")` | |
| ## Group Relative Policy Optimization (GRPO) | |
| **What it is:** Online RL method that optimizes relative to group performance, useful for tasks with verifiable rewards. | |
| **When to use:** | |
| - Tasks with automatic reward signals (code execution, math verification) | |
| - Online learning scenarios | |
| - When DPO offline data is insufficient | |
| **Dataset format:** Prompt-only format (model generates responses, reward computed online) | |
| **Example:** | |
| ```python | |
| # Use TRL maintained script | |
| hf_jobs("uv", { | |
| "script": "https://raw.githubusercontent.com/huggingface/trl/main/examples/scripts/grpo.py", | |
| "script_args": [ | |
| "--model_name_or_path", "Qwen/Qwen2.5-0.5B-Instruct", | |
| "--dataset_name", "trl-lib/math_shepherd", | |
| "--output_dir", "grpo-model" | |
| ], | |
| "flavor": "a10g-large", | |
| "timeout": "4h", | |
| "secrets": {"HF_TOKEN": "$HF_TOKEN"} | |
| }) | |
| ``` | |
| **Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/grpo_trainer")` | |
| ## Reward Modeling | |
| **What it is:** Train a reward model to score responses, used as a component in RLHF pipelines. | |
| **When to use:** | |
| - Building RLHF pipeline | |
| - Need automatic quality scoring | |
| - Creating reward signals for PPO training | |
| **Dataset format:** Preference pairs with "chosen" and "rejected" responses | |
| **Documentation:** `hf_doc_fetch("https://huggingface.co/docs/trl/reward_trainer")` | |
| ## Method Selection Guide | |
| | Method | Complexity | Data Required | Use Case | | |
| |--------|-----------|---------------|----------| | |
| | **SFT** | Low | Demonstrations | Initial fine-tuning | | |
| | **DPO** | Medium | Paired preferences | Post-SFT alignment | | |
| | **GRPO** | Medium | Prompts + reward fn | Online RL with automatic rewards | | |
| | **Reward** | Medium | Paired preferences | Building RLHF pipeline | | |
| ## Recommended Pipeline | |
| **For most use cases:** | |
| 1. **Start with SFT** - Fine-tune base model on task data | |
| 2. **Follow with DPO** - Align to preferences using paired data | |
| 3. **Optional: GGUF conversion** - Deploy for local inference | |
| **For advanced RL scenarios:** | |
| 1. **Start with SFT** - Fine-tune base model | |
| 2. **Train reward model** - On preference data | |
| ## Dataset Format Reference | |
| For complete dataset format specifications, use: | |
| ```python | |
| hf_doc_fetch("https://huggingface.co/docs/trl/dataset_formats") | |
| ``` | |
| Or validate your dataset: | |
| ```bash | |
| uv run https://huggingface.co/datasets/mcp-tools/skills/raw/main/dataset_inspector.py \ | |
| --dataset your/dataset --split train | |
| ``` | |
| ## See Also | |
| - `references/training_patterns.md` - Common training patterns and examples | |
| - `scripts/train_sft_example.py` - Complete SFT template | |
| - `scripts/train_dpo_example.py` - Complete DPO template | |
| - [Dataset Inspector](https://huggingface.co/datasets/mcp-tools/skills/raw/main/dataset_inspector.py) - Dataset format validation tool | |