Spaces:
Sleeping
Sleeping
File size: 28,924 Bytes
b0265d0 b27b7b1 b0265d0 e7681ed 2504b4c 2789d47 ec20524 23e65bf 5981a70 e968d95 5981a70 b0265d0 44c8277 5981a70 54496c6 5258012 c8e5a39 5cc1220 5258012 5cc1220 5258012 5cc1220 5258012 5cc1220 5258012 5cc1220 7eb088c b27b7b1 7eb088c b27b7b1 483022b b27b7b1 483022b b27b7b1 483022b b27b7b1 483022b b27b7b1 483022b b27b7b1 483022b b27b7b1 483022b b27b7b1 483022b b27b7b1 483022b b27b7b1 483022b b27b7b1 483022b b27b7b1 483022b b27b7b1 483022b b27b7b1 7eb088c b27b7b1 7eb088c b27b7b1 22a8e71 b27b7b1 39434ba b27b7b1 39434ba 22a8e71 9571689 235058f 9571689 235058f 9571689 235058f 9571689 235058f 9571689 235058f 9571689 235058f 9571689 235058f 9571689 235058f 9571689 235058f 22a8e71 235058f 22a8e71 235058f 9571689 235058f 9571689 235058f 9571689 235058f 9571689 235058f 9571689 235058f 9571689 235058f 9571689 22a8e71 9571689 22a8e71 9571689 235058f 9571689 235058f 22a8e71 9571689 22a8e71 9571689 b27b7b1 9571689 7eb088c 9571689 22a8e71 9571689 22a8e71 9571689 c0c605c 22a8e71 b27b7b1 22a8e71 b27b7b1 ec20524 5bbf1ae 82db053 b27b7b1 82db053 5bbf1ae 82db053 b27b7b1 82db053 b0265d0 22a8e71 b27b7b1 9571689 b27b7b1 9571689 b27b7b1 9571689 b27b7b1 9571689 b27b7b1 9571689 b27b7b1 b0265d0 b27b7b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 |
import os
import csv
import zipfile
import shutil
import re
from datetime import datetime
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import cv2
import gradio as gr
from deepface import DeepFace
import numpy as np
from PIL import Image
import time
from pathlib import Path
import pandas as pd
# Configuration
EMOTION_MAP = {
"angry": "😠", "disgust": "🤢", "fear": "😨",
"happy": "😄", "sad": "😢", "surprise": "😲",
"neutral": "😐"
}
BACKENDS = ['opencv', 'mtcnn', 'ssd', 'dlib']
SAVE_DIR = Path("/tmp/emotion_results")
SAVE_DIR.mkdir(exist_ok=True)
# Create directories
(SAVE_DIR / "faces").mkdir(exist_ok=True)
(SAVE_DIR / "annotated").mkdir(exist_ok=True)
for emotion in EMOTION_MAP.keys():
(SAVE_DIR / "faces" / emotion).mkdir(exist_ok=True, parents=True)
(SAVE_DIR / "annotated" / emotion).mkdir(exist_ok=True, parents=True)
# Log file setup
LOG_FILE = SAVE_DIR / "emotion_logs.csv"
if not LOG_FILE.exists():
with open(LOG_FILE, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(["timestamp", "batch_no", "emotion", "confidence", "face_path", "annotated_path"])
def log_emotion(batch_no, emotion, confidence, face_path, annotated_path):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
with open(LOG_FILE, 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow([timestamp, batch_no, emotion, confidence, str(face_path), str(annotated_path)])
def validate_batch_no(batch_no):
"""Validate that batch number contains only digits"""
if not batch_no.strip():
return False, "Batch number cannot be empty"
if not re.match(r'^\d+$', batch_no):
return False, "Batch number must contain only numbers"
return True, ""
def predict_emotion(batch_no: str, image):
if not batch_no.strip():
return None, None, "Please enter a batch number first", gr.Image(visible=False), gr.Textbox(visible=False), gr.Button(visible=False)
if image is None:
return None, None, "Please capture your face first", gr.Image(visible=False), gr.Textbox(visible=False), gr.Button(visible=False)
try:
# Convert PIL Image to OpenCV format
frame = np.array(image)
if frame.ndim == 3:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# Try different backends for face detection
results = None
for backend in BACKENDS:
try:
results = DeepFace.analyze(
frame,
actions=['emotion'],
detector_backend=backend,
enforce_detection=True,
silent=True
)
break
except Exception:
continue
if not results:
return None, None, "No face detected. Please try again.", gr.Image(visible=False), gr.Textbox(visible=False), gr.Button(visible=False)
# Process the first face found
result = results[0] if isinstance(results, list) else results
emotion = result['dominant_emotion']
confidence = result['emotion'][emotion]
region = result['region']
# Extract face coordinates
x, y, w, h = region['x'], region['y'], region['w'], region['h']
# 1. Save raw face crop
face_crop = frame[y:y+h, x:x+w]
timestamp = int(time.time())
face_dir = SAVE_DIR / "faces" / emotion
face_path = face_dir / f"{batch_no}_{timestamp}.jpg"
cv2.imwrite(str(face_path), face_crop)
# 2. Create and save annotated image
annotated_frame = frame.copy()
cv2.rectangle(annotated_frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(annotated_frame, f"{emotion} {EMOTION_MAP[emotion]} {confidence:.1f}%",
(x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
annotated_dir = SAVE_DIR / "annotated" / emotion
annotated_path = annotated_dir / f"{batch_no}_{timestamp}.jpg"
cv2.imwrite(str(annotated_path), annotated_frame)
# Log both paths
log_emotion(batch_no, emotion, confidence, face_path, annotated_path)
# Convert back to PIL format for display
output_img = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
return output_img, f"Batch {batch_no}: {emotion.title()} ({confidence:.1f}%)", "", gr.Image(visible=True), gr.Textbox(visible=True), gr.Button(visible=True)
except Exception as e:
return None, None, f"Error processing image: {str(e)}", gr.Image(visible=False), gr.Textbox(visible=False), gr.Button(visible=False)
def check_batch_no(batch_no):
"""Check if batch number is entered and valid"""
is_valid, validation_msg = validate_batch_no(batch_no)
if not is_valid:
return (
gr.Textbox(interactive=True), # Keep batch_no interactive
gr.Textbox(value=validation_msg, visible=bool(validation_msg)), # Show validation message
gr.Image(visible=False), # Hide webcam
gr.Image(visible=False), # Hide result image
gr.Textbox(visible=False), # Hide result text
gr.Button(visible=False) # Hide done button
)
# After validation, disable input and show countdown
return (
gr.Textbox(interactive=False), # Disable batch_no
gr.Textbox(value="Processing will start in 5 seconds...", visible=True), # Show countdown
gr.Image(visible=False), # Keep webcam hidden initially
gr.Image(visible=False), # Hide result image
gr.Textbox(visible=False), # Hide result text
gr.Button(visible=False) # Hide done button
)
def activate_webcam(batch_no):
"""Actually activate the webcam after the delay"""
is_valid, _ = validate_batch_no(batch_no)
if not is_valid:
return (
gr.Textbox(interactive=True), # Re-enable batch_no if invalid
gr.Textbox(visible=False), # Hide message
gr.Image(visible=False), # Hide webcam
gr.Image(visible=False), # Hide result image
gr.Textbox(visible=False), # Hide result text
gr.Button(visible=False) # Hide done button
)
return (
gr.Textbox(interactive=False), # Keep batch_no disabled
gr.Textbox(value="Please capture your face now", visible=True), # Show instruction
gr.Image(visible=True), # Show webcam
gr.Image(visible=False), # Hide result image
gr.Textbox(visible=False), # Hide result text
gr.Button(visible=False) # Hide done button
)
def reset_interface():
"""Reset the interface to initial state"""
return (
gr.Textbox(value="", interactive=True), # Enable batch_no
gr.Textbox(value="", visible=False), # Hide message
gr.Image(value=None, visible=False), # Hide webcam
gr.Image(visible=False), # Hide result image
gr.Textbox(visible=False), # Hide result text
gr.Button(visible=False) # Hide done button
)
def get_image_gallery(emotion, image_type):
"""Get image gallery for selected emotion and type"""
if emotion == "All Emotions":
image_dict = {}
for emot in EMOTION_MAP.keys():
folder = SAVE_DIR / image_type / emot
image_dict[emot] = [str(f) for f in folder.glob("*.jpg") if f.exists()]
else:
folder = SAVE_DIR / image_type / emotion
image_dict = {emotion: [str(f) for f in folder.glob("*.jpg") if f.exists()]}
return image_dict
def create_custom_zip(file_paths):
"""Create zip from selected images and return the file path"""
if not file_paths:
return None
temp_dir = SAVE_DIR / "temp_downloads"
temp_dir.mkdir(exist_ok=True)
zip_path = temp_dir / f"emotion_images_{int(time.time())}.zip"
if zip_path.exists():
try:
zip_path.unlink()
except Exception as e:
print(f"Error deleting old zip: {e}")
try:
with zipfile.ZipFile(zip_path, 'w') as zipf:
for file_path in file_paths:
file_path = Path(file_path)
if file_path.exists():
zipf.write(file_path, arcname=file_path.name)
return str(zip_path) if zip_path.exists() else None
except Exception as e:
print(f"Error creating zip file: {e}")
return None
def download_all_emotions_structured():
"""Download all emotions in a structured ZIP with folders for each emotion"""
temp_dir = SAVE_DIR / "temp_downloads"
temp_dir.mkdir(exist_ok=True)
zip_path = temp_dir / f"all_emotions_structured_{int(time.time())}.zip"
if zip_path.exists():
try:
zip_path.unlink()
except Exception as e:
print(f"Error deleting old zip: {e}")
try:
with zipfile.ZipFile(zip_path, 'w') as zipf:
for emotion in EMOTION_MAP.keys():
# Add faces
face_dir = SAVE_DIR / "faces" / emotion
for face_file in face_dir.glob("*.jpg"):
if face_file.exists():
arcname = f"faces/{emotion}/{face_file.name}"
zipf.write(face_file, arcname=arcname)
# Add annotated images
annotated_dir = SAVE_DIR / "annotated" / emotion
for annotated_file in annotated_dir.glob("*.jpg"):
if annotated_file.exists():
arcname = f"annotated/{emotion}/{annotated_file.name}"
zipf.write(annotated_file, arcname=arcname)
return str(zip_path) if zip_path.exists() else None
except Exception as e:
print(f"Error creating structured zip file: {e}")
return None
def delete_selected_images(selected_images):
"""Delete selected images with proper validation"""
if not selected_images:
return "No images selected for deletion"
deleted_count = 0
failed_deletions = []
for img_path in selected_images:
img_path = Path(img_path)
try:
if img_path.exists():
img_path.unlink()
deleted_count += 1
else:
failed_deletions.append(str(img_path))
except Exception as e:
print(f"Error deleting {img_path}: {e}")
failed_deletions.append(str(img_path))
if deleted_count > 0 and LOG_FILE.exists():
try:
df = pd.read_csv(LOG_FILE)
for img_path in selected_images:
img_path = str(img_path)
if "faces" in img_path:
df = df[df.face_path != img_path]
else:
df = df[df.annotated_path != img_path]
df.to_csv(LOG_FILE, index=False)
except Exception as e:
print(f"Error updating logs: {e}")
status_msg = f"Deleted {deleted_count} images"
if failed_deletions:
status_msg += f"\nFailed to delete {len(failed_deletions)} images"
return status_msg
def delete_images_in_category(emotion, image_type, confirm=False):
"""Delete all images in a specific category with confirmation"""
if not confirm:
return "Please check the confirmation box to delete all images in this category"
if emotion == "All Emotions":
deleted_count = 0
for emot in EMOTION_MAP.keys():
deleted_count += delete_images_in_category(emot, image_type, confirm=True)
return f"Deleted {deleted_count} images across all emotion categories"
folder = SAVE_DIR / image_type / emotion
deleted_count = 0
failed_deletions = []
for file in folder.glob("*"):
if file.is_file():
try:
file.unlink()
deleted_count += 1
except Exception as e:
print(f"Error deleting {file}: {e}")
failed_deletions.append(str(file))
if deleted_count > 0 and LOG_FILE.exists():
try:
df = pd.read_csv(LOG_FILE)
if image_type == "faces":
df = df[df.emotion != emotion]
else:
df = df[~((df.emotion == emotion) & (df.annotated_path.str.contains(str(folder))))]
df.to_csv(LOG_FILE, index=False)
except Exception as e:
print(f"Error updating logs: {e}")
status_msg = f"Deleted {deleted_count} images from {emotion}/{image_type}"
if failed_deletions:
status_msg += f"\nFailed to delete {len(failed_deletions)} images"
return status_msg
def get_logs():
if LOG_FILE.exists():
return pd.read_csv(LOG_FILE)
return pd.DataFrame()
def view_logs():
df = get_logs()
if not df.empty:
try:
return df.to_markdown()
except ImportError:
return df.to_string()
return "No logs available yet"
def download_logs():
if LOG_FILE.exists():
temp_dir = SAVE_DIR / "temp_downloads"
temp_dir.mkdir(exist_ok=True)
download_path = temp_dir / "emotion_logs.csv"
shutil.copy2(LOG_FILE, download_path)
return str(download_path)
return None
def clear_all_data():
"""Clear all images and logs"""
deleted_count = 0
for emotion in EMOTION_MAP.keys():
for img_type in ["faces", "annotated"]:
folder = SAVE_DIR / img_type / emotion
for file in folder.glob("*"):
if file.is_file():
try:
file.unlink()
deleted_count += 1
except Exception as e:
print(f"Error deleting {file}: {e}")
temp_dir = SAVE_DIR / "temp_downloads"
if temp_dir.exists():
try:
shutil.rmtree(temp_dir)
except Exception as e:
print(f"Error deleting temp directory: {e}")
if LOG_FILE.exists():
try:
LOG_FILE.unlink()
except Exception as e:
print(f"Error deleting log file: {e}")
try:
with open(LOG_FILE, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(["timestamp", "batch_no", "emotion", "confidence", "face_path", "annotated_path"])
except Exception as e:
print(f"Error recreating log file: {e}")
empty_df = pd.DataFrame(columns=["timestamp", "batch_no", "emotion", "confidence", "face_path", "annotated_path"])
return f"Deleted {deleted_count} items. All data has been cleared.", empty_df, None
# Unified CSS for both interfaces
desktop_css = """
:root {
--spacing: 0.75rem;
--border-radius: 8px;
--shadow: 0 2px 6px rgba(0,0,0,0.1);
--primary-color: #4f46e5;
--danger-color: #ef4444;
--success-color: #10b981;
--panel-bg: #f8f9fa;
}
.gradio-container {
max-width: 1200px !important;
margin: 0 auto;
padding: 1.5rem;
}
h1 {
font-size: 1.8rem !important;
margin-bottom: 1.2rem !important;
}
.message {
color: red;
font-weight: bold;
margin: 0.5rem 0;
padding: 0.5rem;
background: #fff3f3;
border-radius: var(--border-radius);
}
.gallery {
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr)) !important;
gap: var(--spacing);
}
.disabled-input {
background-color: #f0f0f0;
}
.processing {
color: orange;
font-weight: bold;
}
.success {
color: var(--success-color);
font-weight: bold;
}
.tab-nav {
margin-bottom: 1.5rem;
}
.dashboard-panel {
background: white;
padding: 1.5rem;
border-radius: var(--border-radius);
box-shadow: var(--shadow);
margin-bottom: 1.5rem;
}
.input-group, .output-group {
margin-bottom: 1rem;
}
button {
border-radius: var(--border-radius) !important;
padding: 0.6rem 1.2rem !important;
font-size: 0.95rem !important;
transition: all 0.2s ease !important;
}
button:hover {
transform: translateY(-1px);
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}
button.primary {
background: var(--primary-color) !important;
color: white !important;
}
button.danger {
background: var(--danger-color) !important;
color: white !important;
}
.webcam-container {
width: 100%;
max-width: 800px;
margin: 0 auto;
border-radius: var(--border-radius);
overflow: hidden;
box-shadow: var(--shadow);
}
.result-container {
width: 100%;
max-width: 800px;
margin: 1rem auto;
border-radius: var(--border-radius);
overflow: hidden;
}
.instruction-panel {
background: var(--panel-bg);
padding: 1.2rem;
border-radius: var(--border-radius);
margin-bottom: 1.5rem;
border-left: 4px solid var(--primary-color);
}
.control-row {
display: flex;
gap: 1rem;
align-items: center;
margin-bottom: 1rem;
}
.management-section {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 1.5rem;
margin-top: 1.5rem;
}
.capture-section {
display: grid;
grid-template-columns: 1fr;
gap: 1.5rem;
}
@media (max-width: 992px) {
.management-section, .capture-section {
grid-template-columns: 1fr;
}
.gradio-container {
padding: 1rem;
}
}
@media (max-width: 768px) {
.gallery {
grid-template-columns: repeat(auto-fill, minmax(150px, 1fr)) !important;
}
}
"""
# Capture Interface - Now matches Data Management style
with gr.Blocks(title="Emotion Capture", css=desktop_css) as capture_interface:
with gr.Column(elem_classes="dashboard-panel"):
gr.Markdown("""
# Emotion Capture Interface
""")
with gr.Column(elem_classes="instruction-panel"):
gr.Markdown("""
**Instructions:**
1. Enter/scan your batch number (numbers only)
2. System will automatically proceed after 5 seconds of inactivity
3. Webcam will activate for face capture
4. View your emotion analysis results
5. Click "Done" to reset the interface
""")
with gr.Row(elem_classes="control-row"):
batch_no = gr.Textbox(
label="Batch Number",
placeholder="Enter or scan numbers only",
interactive=True,
scale=4
)
message = gr.Textbox(
label="Status",
interactive=False,
elem_classes="message",
visible=False
)
with gr.Column(elem_classes="capture-section"):
webcam = gr.Image(
sources=["webcam"],
type="pil",
label="Live Camera Feed",
interactive=True,
mirror_webcam=True,
visible=False,
elem_classes="webcam-container",
height=500
)
result_img = gr.Image(
label="Analysis Result",
interactive=False,
visible=False,
elem_classes="result-container",
height=500
)
with gr.Row():
result_text = gr.Textbox(
label="Emotion Result",
interactive=False,
visible=False,
container=False
)
with gr.Row():
done_btn = gr.Button(
"Done",
visible=False,
elem_classes="primary"
)
# Event handlers
batch_no.change(
check_batch_no,
inputs=batch_no,
outputs=[batch_no, message, webcam, result_img, result_text, done_btn],
queue=False
).then(
lambda: time.sleep(5),
None,
None,
queue=False
).then(
activate_webcam,
inputs=batch_no,
outputs=[batch_no, message, webcam, result_img, result_text, done_btn],
queue=False
)
webcam.change(
predict_emotion,
inputs=[batch_no, webcam],
outputs=[result_img, result_text, message, result_img, result_text, done_btn]
)
done_btn.click(
reset_interface,
outputs=[batch_no, message, webcam, result_img, result_text, done_btn]
)
# Data Management Interface
with gr.Blocks(title="Data Management") as data_interface:
with gr.Column():
gr.Markdown("""
# Data Management Dashboard
""")
with gr.Tabs():
with gr.Tab("Image Management", elem_classes="dashboard-panel"):
with gr.Column():
gr.Markdown("### Image Gallery Management")
with gr.Row():
emotion_selector = gr.Dropdown(
choices=["All Emotions"] + list(EMOTION_MAP.keys()),
label="Emotion Category",
value="All Emotions",
scale=3
)
image_type_selector = gr.Dropdown(
choices=["faces", "annotated"],
label="Image Type",
value="faces",
scale=2
)
refresh_btn = gr.Button("Refresh", scale=1)
current_image_paths = gr.State([])
gallery = gr.Gallery(
label="Image Gallery",
columns=5,
height="auto",
preview=True
)
selected_images = gr.CheckboxGroup(
label="Selected Images",
interactive=True,
value=[],
visible=False
)
with gr.Row(elem_classes="management-section"):
with gr.Column():
gr.Markdown("#### Download Options")
with gr.Row():
download_btn = gr.Button("Download Selected", variant="primary")
download_all_btn = gr.Button("Download All in Category")
download_structured_btn = gr.Button("Download Full Archive", variant="primary")
download_output = gr.File(label="Download Result", visible=False)
with gr.Column():
gr.Markdown("#### Delete Options")
delete_btn = gr.Button("Delete Selected", variant="stop")
with gr.Row():
delete_confirm = gr.Checkbox(
label="Confirm deletion of ALL images in this category",
value=False,
scale=4
)
delete_all_btn = gr.Button(
"Delete All in Category",
variant="stop",
interactive=False,
scale=1
)
delete_output = gr.Textbox(label="Operation Status")
with gr.Tab("Emotion Logs", elem_classes="dashboard-panel"):
with gr.Column():
gr.Markdown("### Emotion Analysis Logs")
with gr.Row():
refresh_logs_btn = gr.Button("Refresh Logs")
download_logs_btn = gr.Button("Export Logs", variant="primary")
clear_all_btn = gr.Button("Clear All Data", variant="stop")
logs_display = gr.Markdown()
logs_csv = gr.File(label="Logs Download", visible=False)
clear_message = gr.Textbox(label="Operation Status")
# Event handlers for Data Management
def update_gallery_components(emotion, image_type):
image_dict = get_image_gallery(emotion, image_type)
gallery_items = []
image_paths = []
for emotion, images in image_dict.items():
for img_path in images:
gallery_items.append((img_path, f"{emotion}: {Path(img_path).name}"))
image_paths.append(img_path)
return gallery_items, image_paths
initial_gallery, initial_paths = update_gallery_components("All Emotions", "faces")
gallery.value = initial_gallery
current_image_paths.value = initial_paths
selected_images.choices = initial_paths
def update_components(emotion, image_type):
gallery_items, image_paths = update_gallery_components(emotion, image_type)
return {
gallery: gallery_items,
current_image_paths: image_paths,
selected_images: gr.CheckboxGroup(choices=image_paths, value=[])
}
emotion_selector.change(
update_components,
inputs=[emotion_selector, image_type_selector],
outputs=[gallery, current_image_paths, selected_images]
)
image_type_selector.change(
update_components,
inputs=[emotion_selector, image_type_selector],
outputs=[gallery, current_image_paths, selected_images]
)
refresh_btn.click(
update_components,
inputs=[emotion_selector, image_type_selector],
outputs=[gallery, current_image_paths, selected_images]
)
download_btn.click(
lambda selected: create_custom_zip(selected),
inputs=selected_images,
outputs=download_output,
api_name="download_selected"
).then(
lambda x: gr.File(visible=x is not None),
inputs=download_output,
outputs=download_output
)
download_all_btn.click(
lambda emotion, img_type: create_custom_zip(
[str(f) for f in (SAVE_DIR / img_type / (emotion if emotion != "All Emotions" else "*")).glob("*.jpg") if f.exists()]
),
inputs=[emotion_selector, image_type_selector],
outputs=download_output,
api_name="download_all"
).then(
lambda x: gr.File(visible=x is not None),
inputs=download_output,
outputs=download_output
)
download_structured_btn.click(
download_all_emotions_structured,
outputs=download_output,
api_name="download_all_structured"
).then(
lambda x: gr.File(visible=x is not None),
inputs=download_output,
outputs=download_output
)
delete_btn.click(
lambda selected: {
"delete_output": delete_selected_images(selected),
**update_components(emotion_selector.value, image_type_selector.value)
},
inputs=selected_images,
outputs=[delete_output, gallery, current_image_paths, selected_images]
)
delete_confirm.change(
lambda x: gr.Button(interactive=x),
inputs=delete_confirm,
outputs=delete_all_btn
)
delete_all_btn.click(
lambda emotion, img_type, confirm: {
"delete_output": delete_images_in_category(emotion, img_type, confirm),
**update_components(emotion, img_type)
},
inputs=[emotion_selector, image_type_selector, delete_confirm],
outputs=[delete_output, gallery, current_image_paths, selected_images]
)
refresh_logs_btn.click(
view_logs,
outputs=logs_display
)
download_logs_btn.click(
download_logs,
outputs=logs_csv,
api_name="download_logs"
).then(
lambda x: gr.File(visible=x is not None),
inputs=logs_csv,
outputs=logs_csv
)
clear_all_btn.click(
clear_all_data,
outputs=[clear_message, logs_display, logs_csv]
).then(
lambda: update_components("All Emotions", "faces"),
outputs=[gallery, current_image_paths]
).then(
lambda: gr.CheckboxGroup(choices=[], value=[]),
outputs=selected_images
)
# Combine interfaces
demo = gr.TabbedInterface(
[capture_interface, data_interface],
["Emotion Capture", "Data Management"],
css=desktop_css
)
if __name__ == "__main__":
demo.launch() |